The weather forecast remains unchanged for the planned Tuesday, Dec. 21, launch of SpaceX’s 24th commercial resupply services mission to the International Space Station for NASA.
Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron predict a 30% chance of favorable weather conditions for Tuesday’s targeted liftoff of a SpaceX Falcon 9 rocket and the company’s Dragon spacecraft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Less than favorable conditions are expected for the primary launch window early Tuesday morning, with the main concerns associated with this weather being the cumulus cloud rule, thick cloud layer rule, and surface electric field rule.
NASA commercial cargo provider SpaceX is targeting tomorrow at 5:06 a.m. EST, to launch its resupply services mission to the space station. The backup date for launch is Wednesday, Dec. 22, at 4:43 a.m. EST.
Joel Montalbano, manager for the International Space Station Program
Bob Dempsey, Acting Deputy Chief Scientist, International Space Station Program
Sarah Walker, director, Dragon mission management at SpaceX
Arlena Moses, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron
Live launch coverage will air on NASA Television, the NASA app and the agency’s website, with prelaunch events starting Tuesday at 4:45 a.m. EST. Join us on the blog for live updates, or follow along on NASA TV or the agency’s website for the live launch broadcast.
Stay connected with the mission on social media and let people know you’re following the mission on Twitter, Facebook, and Instagram by using the hashtags #Dragon and #NASASocial. Follow and tag these accounts:
NASA commercial cargo launch provider SpaceX’s Falcon 9 rocket – with the Dragon atop – was rolled out to the launch pad Sunday morning, Dec. 19, before being raised to a vertical position in preparation for Tuesday’s launch of SpaceX’s 24th commercial resupply services mission to the International Space Station. Liftoff of the Falcon 9 is scheduled for 5:06 a.m. EST.
Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron now predict a 30% chance of favorable weather conditions for Tuesday’s launch, with the cumulous cloud, thick cloud layer, and surface electric field rules remaining the primary weather concerns.
Dragon will deliver a variety of NASA science investigations, including a protein crystal growth study that could improve how cancer treatment drugs are delivered to patients, a handheld bioprinter that could one day be used to print tissue directly onto wounds for faster healing, an investigation from the makers of Tide that examines detergent efficacy in microgravity, and investigations from the Student Payload Opportunity with Citizen Science (SPOCS) program.
About 12 minutes after launch, Dragon will separate from the Falcon 9 rocket’s second stage and begin a carefully choreographed series of thruster firings to reach the space station. Arrival to the station is planned for Wednesday, Dec. 22. Dragon will dock autonomously to the forward-facing port of the station’s Harmony module, with NASA astronauts Raja Chari and Thomas Marshburn monitoring operations from the station.
The spacecraft is expected to spend about a month attached to the orbiting outpost before it returns to Earth with research and return cargo, splashing down off the coast of Florida.
Tune in to NASA TV or the agency’s website for live coverage of mission activities, beginning Monday, Dec. 20, at noon with the prelaunch news conference. Live launch day coverage starts Tuesday at 4:45 a.m. EST.
Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron predict a 40% chance of favorable weather conditions for Tuesday’s launch, with the cumulous cloud, thick cloud layer, and surface electric field rules being the primary weather concerns.
SpaceX is targeting Dec. 21, at 5:06 a.m. EST, to launch its 24th commercial resupply services mission to the International Space Station for NASA. Liftoff will be from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. SpaceX’s Dragon spacecraft will deliver new science investigations, supplies, and equipment for the international crew.
Some of the NASA science investigations launching as part of Dragon’s 6,500 pounds of cargo include a protein crystal growth study that could improve how cancer treatment drugs are delivered to patients and a handheld bioprinter that could one day be used to print tissue directly onto wounds for faster healing. There are also experiments from students at several universities as part of the Student Payload Opportunity with Citizen Science (SPOCS) program and an investigation from the makers of Tide that examines detergent efficacy in microgravity.
Live coverage will air on NASA Television, the NASA app and the agency’s website, with prelaunch events starting Tuesday at 4:45 a.m. You can also join us here on the blog for live updates.
Stay connected with the mission on social media and let people know you’re following the mission on Twitter, Facebook, and Instagram by using the hashtags #Dragon and #NASASocial. Follow and tag these accounts:
Joint teams from NASA and SpaceX have completed a launch readiness review ahead of the company’s 24th commercial resupply services mission to the International Space Station for the agency. Liftoff is targeted for Tuesday, Dec. 21, at 5:06 a.m. EST from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, and the live launch broadcast will begin at 4:45 a.m.
SpaceX’s Falcon 9 rocket and Dragon spacecraft have been mated inside the company’s hangar at Launch Complex 39A. Rollout to the launch pad is scheduled for Sunday, Dec. 19, when teams from SpaceX will then raise the Falcon 9 – with Dragon atop – into vertical position in preparation for launch.
Tune in on NASA Television, the NASA app, or the agency’s website at noon Monday, Dec. 20, for the prelaunch news conference from Kennedy’s Press Site with the following participants:
Joel Montalbano, manager, NASA’s International Space Station Program
Bob Dempsey, acting deputy chief scientist, NASA’s International Space Station Program
Sarah Walker, director, Dragon Mission Management, SpaceX
Arlena Moses, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron
SpaceX’s Dragon spacecraft will deliver 6,500 pounds of new science investigations, supplies, and equipment for the international crew. Research includes a protein crystal growth study that could improve how cancer treatment drugs are delivered to patients and a handheld bioprinter that could one day be used to print tissue directly onto wounds for faster healing. Also aboard are experiments from students at several universities as part of the Student Payload Opportunity with Citizen Science (SPOCS) program as well as an investigation from the makers of Tide that examines detergent efficacy in microgravity.
NASA and SpaceX are targeting Tuesday, Dec. 21, at 5:06 a.m. EST for launch of the 24th Commercial Resupply Services mission to the International Space Station. The Dragon spacecraft will lift off aboard a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Dragon will bring food, supplies, and scientific investigations to the orbiting crew, including a protein crystal growth study that could improve the delivery of cancer treatment drugs and a handheld bioprinter that could one day be used to print tissue directly onto wounds to faster healing.
The spacecraft will arrive at the station on Wednesday, Dec. 22 at approximately 4:30 a.m. and remain docked for about a month before returning to Earth.
The mission will be covered live on NASA TV, the NASA app, and the agency’s website.
Media accreditation is now open for SpaceX’s 24th cargo resupply mission for NASA to the International Space Station. Liftoff of the cargo Dragon spacecraft on a Falcon 9 rocket is targeted for late December from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Media prelaunch and launch activities will take place at Kennedy. Media wishing to take part in person must apply for credentials at https://media.ksc.nasa.gov. International media residing in the United States must apply by Tuesday, Nov. 23. U.S. media must apply by Monday, Nov. 29.
The cargo Dragon will deliver a variety of investigations to the space station, including a protein crystal growth study that could improve the delivery of cancer treatment drugs; a handheld bioprinter that will test technology that could one day be used to print tissue directly on wounds to accelerate healing; experiments from students at several universities as part of the Student Payload Opportunity with Citizen Science (SPOCS) program; and an investigation from the makers of Tide that examines detergent efficacy in microgravity.
For a link to the full media advisory, click here.
Recently, the four chile pepper plants growing aboard the International Space Station in the Advanced Plant Habitat (APH) bore fruit – several peppers, in fact.
The peppers developed from flowers that bloomed over the past few weeks. Peppers are self-pollinating, and once pollination occurred, peppers started forming 24 to 48 hours later; however, not all pollinated flowers developed into peppers.
A unique feature of the APH is that it can be controlled remotely. To pollinate the flowers in orbit, the team at NASA’s Kennedy Space Center instructed APH to run its fans at variable rates to create a gentle breeze in microgravity to agitate the flowers and encourage the transfer of pollen. The space station crew also provided assistance by hand pollinating some of the flowers.
Studies of fruit development in microgravity are limited, and NASA researchers have noted lower fruit development versus ground observations in this experiment for reasons that are not fully understood at this point. Overcoming the challenges of growing fruit in microgravity is important for long-duration missions during which crew members will need good sources of Vitamin C – such as peppers – to supplement their diets.
The average length for this type of pepper is just over three inches in ground tests. Hatch chile peppers are a mild heat pepper that starts out as green and will ripen to red over time, but it’s unknown what effect microgravity will have on the length to which they grow and their potency.
Astronauts will perform two harvests this year – one at 100 days in late October, and one at 120 days in early November. At those times, astronauts will sanitize the peppers, eat part of their harvests, and return the rest to Earth for analysis.
I loved getting my hands on the pepper plants and pollinating them! I felt a much higher-than-usual level of focus compared to tending plants on Earth. Of course I played Red Hot Chili Peppers for them! 🌶 See why we are growing this complicated crop: https://t.co/7YJ8yfrRfPpic.twitter.com/8MnpLVbYoA
While the International Space Station was traveling about 260 miles over Western Australia, a SpaceX Dragon cargo spacecraft autonomously docked to the forward-facing port of the orbiting laboratory’s Harmony module at 10:30 a.m. EDT, Monday, Aug. 30. Flight Engineers Shane Kimbrough and Megan McArthur of NASA monitored operations.
Among the science experiments Dragon is delivering to the space station are:
Building bone with byproducts REducing Arthritis Dependent Inflammation First Phase (READI FP) evaluates the effects of microgravity and space radiation on the growth of bone tissue and tests whether bioactive metabolites, which include substances such as antioxidants formed when food is broken down, might protect bones during spaceflight. The metabolites that will be tested come from plant extracts generated as waste products in wine production. Protecting the health of crew members from the effects of microgravity is crucial for the success of future long-duration space missions. This study could improve scientists’ understanding of the physical changes that cause bone loss and identify potential countermeasures. This insight also could contribute to prevention and treatment of bone loss on Earth, particularly in post-menopausal women.
Keeping an eye on eyes Retinal Diagnostics tests whether a small, light-based device can capture images of the retinas of astronauts to document progression of vision problems known as Space-Associated Neuro-Ocular Syndrome (SANS). The device uses a commercially available lens approved for routine clinical use and is lightweight, mobile, and noninvasive. The videos and images will be downlinked to test and train models for detecting common signs of SANS in astronauts. The investigation is sponsored by ESA (European Space Agency) with the German Aerospace Center Institute of Space Medicine and European Astronaut Centre.
Robotic helpers
The Nanoracks-GITAI Robotic Arm will demonstrate the microgravity versatility and dexterity of a robot designed by GITAI Japan Inc. Results could support development of robotic labor to support crew activities and tasks, as well as inform servicing, assembly, and manufacturing tasks while in orbit. Robotic support could lower costs and improve crew safety by having robots take on tasks that could expose crew members to hazards. The technology also has applications in extreme and potentially dangerous environments on Earth, including disaster relief, deep-sea excavation, and servicing nuclear power plants. The experiment will be conducted inside the Nanoracks Bishop Airlock, the space station’s first commercial airlock.
Putting materials to the test MISSE-15 NASA is one of a series of investigations on Alpha Space’s Materials ISS Experiment Flight Facility, which is testing how the space environment affects the performance and durability of specific materials and components. These tests provide insights that support development of better materials needed for space exploration. Testing materials in space has the potential to significantly speed up their development. Materials capable of standing up to space also have potential applications in harsh environments on Earth and for improved radiation protection, better solar cells, and more durable concrete.
Helping plants deal with stress
Plants grown under microgravity conditions typically display evidence of stress. Advanced Plant EXperiment-08 (APEX-08) examines the role of compounds known as polyamines in the response of the small, flowering plant thale cress to microgravity stress. Because expression of the genes involved in polyamine metabolism remain the same in space as on the ground, plants do not appear to use polyamines to respond to stress in microgravity. APEX-08 attempts to engineer a way for them to do so. Results could help identify key targets for genetic engineering of plants more suited to microgravity.
Easier drug delivery
The Faraday Research Facility is a multipurpose unit that uses the space station’s EXPRESS payload rack systems, which enable quick, simple integration of multiple payloads . On this first flight, the facility hosts a Houston Methodist Research Institute experiment and two STEM collaborations, including “Making Space for Girls” with the Girl Scouts of Citrus Council in Orlando, Florida.
The Faraday Nanofluidic Implant Communication Experiment (Faraday-NICE) tests an implantable, remote-controlled drug delivery system using sealed containers of saline solution as surrogate test subjects. The device could provide an alternative to bulky, cumbersome infusion pumps, a possible game changer for long-term management of chronic conditions on Earth. Remote-controlled drug delivery could simplify administration for people with limitations.
A partnership between Faraday and Girls Scouts allows troops to play a role in conducting the control experiments, including providing them with images of the same experiments that are happening in space. The studies involve plant growth, ant colonization, and the brine shrimp lifecycle.
These are just a few of the hundreds of investigations currently being conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Advances in these areas will help keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars through Artemis.
SpaceX Dragon is approximately 30 minutes ahead of its targeted time to reach the International Space Station, with an expected docking of the cargo spacecraft around 10:30 a.m. EDT. Live coverage will now begin at 9 a.m. on NASA TV, the agency’s website, and the NASA app.
The spacecraft lifted off Sunday, Aug. 29, atop a SpaceX Falcon 9 rocket for the company’s 23rd Cargo Resupply Services mission at NASA’s Kennedy Space Center. When it arrives to the space station, Dragon will dock autonomously to the forward-facing port of the station’s Harmony module, with Expedition 65 Flight Engineers Shane Kimbrough and Megan McArthur of NASA monitoring operations.
At noon today, NASA TV will broadcast a prelaunch news conference from the agency’s Kennedy Space Center in Florida for SpaceX’s 23rd commercial resupply services mission. The event will feature representatives from NASA’s International Space Station Program, SpaceX, and the U.S. Space Force Space Launch Delta 45.
Participants include: Joel Montalbano, manager for the International Space Station Program (remotely from Johnson Space Center in Houston); Jennifer Scott Williams, manager, Applications Client Support Office for the International Space Station Program; Sarah Walker, director, Dragon mission management at SpaceX; and Brian Cizek, launch weather officer, 45th Weather Squadron, Cape Canaveral Space Force Station.
The public can ask questions by using #AskNASA on Twitter. Submitted questions may be answered in real-time during the segment. Immediately following the news conference, NASA TV will air a “What’s on Board” video that will introduce the public to some of the investigators flying science on this mission.
NASA and SpaceX are targeting tomorrow, Aug. 28, at 3:37 a.m. EDT, to launch SpaceX’s Dragon spacecraft to the space station. Liftoff, aboard a SpaceX Falcon 9 rocket, will be from Launch Complex 39A at Kennedy.
Dragon will deliver new science investigations, supplies, and equipment for the international crew. Live coverage, starting Saturday at 3:15 a.m. EDT, will air on NASA TV, the NASA app and the agency’s website.