Crawler-Transporter 2 Gets Engine Maintenance in Preps for Exploration Mission-1

Pat Brown, left, and William Vardaman, mechanical technicians with the Jacobs contracting team, perform engine maintenance on NASA's crawler-transporter 2 on March 26, 2019.
Pat Brown, left, and William Vardaman, mechanical technicians with the Jacobs contracting team, perform engine maintenance on NASA’s crawler-transporter 2 on March 26, 2019.

Even the toughest vehicles need regular maintenance to function at their best. Recently, William Vardaman and Pat Brown, both working under the Jacobs contracting team, performed engine maintenance on NASA’s crawler-transporter 2 in the crawler yard located in the agency’s Kennedy Space Center’s Launch Complex 39 area in Florida.

Vardaman, a mechanical technician with the Jacobs contracting team, performs engine maintenance on NASA's crawler-transporter 2 on March 26, 2019.The massive, tracked vehicles are powered by large electrical power engines and two 16-cylinder American Locomotive Company (ALCO) engines. Vardaman and Brown, both mechanical technicians supporting the agency’s Test and Operations Support Contract, spent several days rebuilding the vehicle’s fuel pump assemblies on both ALCO engines. They also installed new oil pumps that will lubricate the ALCOs from the top down before they’re started, minimizing future wear.

This is one of two crawler-transporters that carried rockets and spacecraft, including the Apollo/Saturn V and space shuttle, from the Vehicle Assembly Building (VAB) to the launch pad. Now, they’re getting ready for NASA’s accelerated return to the Moon.

Crawler-transporter 2 has been modified and upgraded to carry the mobile launcher and NASA’s Space Launch System rocket, topped by the Orion spacecraft, for Exploration Mission-1, which will launch in 2020. The agency’s Exploration Ground Systems oversaw extensive upgrades to crawler-transporter 2, including new generators, gear assemblies, roller bearings and brakes, as well as the hydraulic jacking, equalization and leveling (JEL) cylinders that keep its carrying surface level.

Last fall, crawler-transporter 2 carried the newly completed mobile launcher from its construction site north of the VAB, out to Launch Pad 39B, then into the VAB, where the mobile launcher continues extensive testing. The crawler is gearing up for another move of the mobile launcher back to the pad later this spring for more testing.

Learn more about the crawlers at https://www.nasa.gov/content/the-crawlers

Photo credits: NASA/Kim Shiflett

Engineers Mark Completion of Umbilical Testing at Launch Equipment Test Facility

A banner signing event was held at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida to mark completion of umbilical testing.
A banner signing event was held at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida to mark completion of umbilical testing. Photo credit: NASA/Kim Shiflett

The team that tested the umbilical lines and launch accessories that will connect from the mobile launcher (ML) to NASA’s Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 celebrated their achievement during a banner signing at the Launch Equipment Test Facility (LETF) at the agency’s Kennedy Space Center in Florida.

Engineers and technicians in the Engineering Directorate and the Exploration Ground Systems Program, along with contractor support, began the tests at the LETF about 2.5 years ago. The first to be tested was one of two aft skirt electrical umbilicals. Testing of the final umbilical, the second of two tail service mast umbilicals, was completed on June 27.

“The team of NASA test engineers and test managers, and contractor engineers and technicians, worked tirelessly six days a week, 10 hours a day, in order to meet the highly aggressive schedule and deliver the hardware to the mobile launcher for installation,” said Jeff Crisafulli, Test and Design branch chief in the Engineering Directorate.

In all, 21 umbilicals and launch accessories were tested on various simulators at the LETF that mimicked conditions during launch to ensure they are functioning properly and ready for installation on the ML. Most have been delivered and installed on the ML tower. These include the Orion service module umbilical, interim cryogenic propulsion stage umbilical, core stage forward skirt umbilical and core stage inter-tank umbilical. Two aft skirt electrical umbilicals, two aft skirt purge umbilicals, a vehicle stabilizer system, eight vehicle support posts and two tail service mast umbilicals were installed on the 0-level deck of the ML.

Before launch, the umbilical lines will provide power, communications, coolant and fuel to the rocket and spacecraft. Additional accessories will provide access and stabilization. During launch, each umbilical and accessory will release from its connection point, allowing the SLS and Orion to lift off safely from the launch pad.

“Design, fabrication and testing of the new mobile launcher’s umbilicals and launch accessories is a once-in-a-lifetime opportunity that I am proud to have been part of,” Crisafulli said.

Chilling Out During Liquid Oxygen Tank Test

The liquid oxygen tank at Launch Pad 39B at Kennedy Space Center in Florida.Exploration Ground Systems (EGS) chilled out recently with a pressurization test of the liquid oxygen (LO2) tank at Launch Pad 39B at NASA’s Kennedy Space Center in Florida – Pad 39B, recently upgraded by the EGS team for the agency’s new Space Launch System rocket.

The six-hour test of the giant sphere checked for leaks in the cryogenic pipes leading from the tank to the block valves, the liquid oxygen sensing cabinet, and new vaporizers recently installed on the tank.

The SLS will use both liquid oxygen and liquid hydrogen. During tanking, some of the liquid oxygen, stored at minus 297 degrees Fahrenheit, boils off and vapor or mist is visible. While the tank can hold up to 900,000 gallons of liquid oxygen; during the test it only contained 590,000 gallons of the super-cooled propellant.

The test was monitored by engineers and technicians inside Firing Room 1 at the Launch Control Center, a heritage KSC facility also upgraded by the EGS team in preparation for the upcoming mission. Results of the test confirmed that the fill rise rate was acceptable, the tank pressurization sequence works and that only one of the two vaporizers was needed to accomplish pressurization.

Another system is “go” for the first integrated launch of SLS and the Orion spacecraft!

Last of the Big Swing Arm Umbilicals Installed on Mobile Launcher

A heavy-lift crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical high up on the tower of the mobile launcher at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Ben Smegelsky

Nearly the last of several large connection lines, called umbilicals, was installed on the mobile launcher at NASA’s Kennedy Space Center in Florida. The umbilical was lifted by crane and attached high on the tower of the mobile launcher at about the 240-foot level, bringing the steel structure one step closer to supporting processing and launch of NASA’s Orion spacecraft and Space Launch System (SLS) rocket. The launcher is designed to support the assembly, testing, check out and servicing of the rocket, as well as transfer it to the pad and provide the platform from which it will launch.

This particular umbilical will supply propellants, environmental control systems, pneumatics and electrical connections to the interim cryogenic propulsion stage (ICPS) of the SLS rocket and will swing away before launch. The umbilical also will provide hazardous gas leak detection while the rocket is on the pad. The ICPS is located between the core stage of the rocket and the Orion capsule, and will provide propulsion for Orion while in space and give the spacecraft the big push needed to fly beyond the moon.

To install the umbilical, construction workers with JP Donovan prepared the rigging lines and attached the umbilical to a large crane. The ICPS umbilical was slowly lifted up and bolted to the mobile launcher. The entire process took about four hours.

With the umbilical in place, workers will install additional equipment on the tower, as well as electrical wiring, environmental control system tubing, hydraulics and other commodities will be routed to the umbilical arm before testing. Tests of the swing arm also will be performed as part of the verification and validation process.

Exploration Ground Systems is overseeing installation of the launch umbilicals and launch accessories on the mobile launcher to prepare for the first integrated test flight of Orion atop the SLS on Exploration Mission-1. A pair of tail service mast umbilicals are slated for installation later this year and will be the last of the twenty umbilicals and launch accessories to be installed on the mobile launcher. With this test flight, NASA is preparing for missions to send astronauts to deep space destinations, including the Moon, Mars and beyond.

NASA Recovery Team Completes Orion Underway Recovery Test 6 in Pacific Ocean

A test version of the Orion capsule is in the well deck of the USS Anchorage during Underway Recovery Test 6.
During Underway Recovery Test 6, Kennedy Space Center’s NASA Recovery Team spent a week aboard the USS Anchorage where they and the U.S. Navy tested procedures and ground support equipment to improve recovery procedures and hardware ahead of Orion’s next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean. The Orion test article sits inside the well deck of the USS Anchorage after a successful recovery test Jan. 22. Photo credit: NASA/Bill White

NASA’s Recovery Team from Kennedy Space Center just finished a week at sea, testing and improving their processes and ground support hardware to recover astronauts in the Orion capsule once they splash down in the Pacific Ocean. Aboard the USS Anchorage, NASA and the U.S. Navy worked together to run through different sea conditions, time of day and equipment scenarios—putting hardware and the people through their paces.

Astronaut Stephen Bowen was aboard as an observer to better understand the recovery procedures and to offer an astronaut’s perspective. As a former Navy captain, Bowen has a wealth of knowledge to impart to the team—helping them better understand what the crew will be going through as they are bobbing up and down in the capsule after spending time in microgravity.

“I understand what it’s like to be on a boat that doesn’t have a keel (a structural beam that runs in the middle from bow to stern to give it stability) in the open ocean,” Bowen said. “It’s not necessarily the friendliest of places to be.” And add that to the physical manifestations of re-entering a gravity environment after several weeks, Bowen’s first-hand knowledge will be paramount for the team as they hone their plans to make recovery smooth.

During the weeklong testing, the team made strides in developing the final recovery plan and even shaved 15 minutes off their best time. “When the astronauts return to Earth, we are required to retrieve them within two hours,” said NASA Recovery Director Melissa Jones, “but our goal is to get to them as quickly and safely as possible—we are shooting for half that time.”

The team still has several tests scheduled between now and Orion’s first uncrewed flight atop the new Space Launch System rocket, known as Exploration Mission-1. The mission will pave the way for future crewed missions and enable future missions to the Moon, Mars and beyond. During the flight, Orion will travel thousands of miles beyond the Moon before splashing down into the Pacific, where NASA’s Recovery Team will be ready and waiting for her.

Orion Spacecraft Recovery Rehearsal Underway

Orion Underway Recover Test 6 aboard the USS Anchorage in the Pacific Ocean.
As part of Underway Recovery Test 6, the Orion test article is pulled in by a winch line at the rear of the USS Anchorage’s well deck that brings the capsule into the ship, along with four manned LLAMAs (Line Load Attenuation Mechanism Assembly) that control the capsule’s side-to-side movement and a tending line attached to a rigid hull inflatable boat for controlling Orion’s movement behind the ship. Photo credit: NASA/Bill White

NASA’s new deep space exploration systems will send crew 40,000 miles beyond the Moon, and return them safely home. After traveling through space at 25,000 miles per hour, the Orion spacecraft will slow to 300 mph after it passes through the Earth’s atmosphere. The spacecraft then slows down to 20 mph before it safely splashes down in the Pacific Ocean.

When astronauts come back from deep space, they will need to be picked up as quickly as possible. That’s where Kennedy Space Center’s NASA Recovery Team comes in.

Under the auspices of Exploration Ground Systems, Melissa Jones, NASA’s recovery director, and her team will recover the Orion capsule and crew. NASA and the U.S. Navy are working together to ensure they are ready before the first uncrewed Orion mission aboard the agency’s new Space Launch System rocket, known as Exploration Mission-1.

This week, the integrated NASA and U.S. Navy team are aboard the USS Anchorage, testing out new ground support equipment and practicing their procedures.

After Orion completes its mission out past the Moon and heads to Earth, Jones will get the call Orion is coming home. Then, it is her job to get the joint NASA and U.S. Navy team to the capsule’s location quickly and bring it and the astronauts safely aboard the U.S. Navy recovery ship.

“We are testing all of our equipment in the actual environment we will be in when recovering Orion after Exploration Mission-1,” Jones said. “Everything we are doing today is ensuring a safe and swift recovery when the time comes for missions with crew.”

New Umbilical Fitted for Mobile Launcher to Support NASA’s Deep Space Exploration Missions

A fit check of the core stage inter-tank umbilical is in progress on the mobile launcher tower at Kennedy Space Center in Florida.
High up on the mobile launcher tower at NASA’s Kennedy Space Center in Florida, construction workers assist as a crane moves the Core Stage Inter-tank Umbilical (CSITU) into place for a fit check of the attachment hardware. Photo credit: NASA/Glenn Benson

Engineers lifted and installed a third umbilical on the mobile launcher at NASA’s Kennedy Space Center in Florida for a fit check. The tower on the mobile launcher will be equipped with several connections or launch umbilicals like this one. After the fit check was completed, the umbilical was lowered down and will be installed permanently at a later date.

The umbilicals will provide power, communications, coolant and fuel. They will be used to connect the mobile launcher to the agency’s Space Launch System (made up of the core stage, twin solid rocket boosters, and the interim cryogenic propulsion stage) and the Orion spacecraft mounted on top of SLS.

An area on the SLS between the liquid hydrogen and liquid oxygen tanks is known as the core stage inter-tank. The core-stage inter-tank umbilical is the third in a series of five new umbilicals for the mobile launcher. Its main function is to vent excess gaseous hydrogen from the rocket’s core stage. This umbilical also will provide conditioned air, pressurized gases, and power and data connection to the core stage.

The Orion service module umbilical and the core stage forward skirt umbilical were previously installed on the tower. The service module umbilical will connect from the mobile launch tower to the Orion service module. Prior to launch, the umbilical will transfer liquid coolant for the electronics and purge air/gaseous nitrogen for environmental control. The SLS core stage forward skirt is near the top of the core stage, and the forward skirt umbilical provides connections and conditioned air/gaseous nitrogen to the core stage of the rocket. All these umbilicals will swing away from the rocket and spacecraft just before launch.

Several other umbilicals were previously installed on the mobile launcher. These include two aft skirt purge umbilicals, which will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections, remove hazardous gases, and maintain the right temperature range with a nitrogen purge in the boosters until SLS lifts off from the launch pad.

The Ground Systems Development and Operations Program at Kennedy is preparing ground support equipment, including the launch umbilicals, for NASA’s deep space exploration missions.

Liquid Oxygen Tanking Operations Begin at Launch Pad 39B

A Praxair truck offloads liquid oxygen into a giant storage sphere at Launch Pad 39B at Kennedy Space Center in Florida.
Several Praxair trucks carrying their loads of liquid oxygen, or LO2, arrived at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. A mist is visible as LO2 is offloaded from one of the trucks into the giant storage sphere located at the northwest corner of the pad. Photo credit: NASA/Kim Shiflett

The first major integrated operation at Launch Pad 39B at NASA’s Kennedy Space Center in Florida began with the initial tanking of a cryogenic fuel into a giant sphere at the northwest corner of the pad. The tanking operation is one of the steps needed to bring the center closer to supporting the launch of the agency’s Orion spacecraft atop the Space Launch System rocket on its first uncrewed test flight.

“When I think of launch operations, there are distinct pictures that come to mind,” said NASA Launch Director Charlie Blackwell-Thompson. “One of them is during the tanking operations as the cryogenic propellants are loaded into the Space Launch System rocket.”

Several Praxair trucks arrived at the center and offloaded their liquid oxygen, or LO2, slowly, one at a time, into the cryogenic sphere to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit. Praxair, of Danbury, Connecticut, is the company that provides the agency with liquid oxygen and liquid hydrogen.

Another wave of trucks arrived and offloaded their LO2 all at the same time. During the next several months, trucks will continue to arrive from Praxair and offload about 40,000 gallons of fuel two days per week into the sphere that can hold about 900,000 gallons of liquid oxygen.

The procedure to fill the liquid hydrogen storage sphere will begin in November and will be completed in the same way. When both tanks are filled to about halfway, engineers in a firing room in the Launch Control Center will perform pressurization tests. Additional tests will be performed with the mobile launcher around mid-2018. The cryogenic fuels will remain in the tanks.

Blackwell-Thompson said it is not uncommon during tanking to see vapors and mist in the cryo storage area and near the vehicle. This week, she got a preview, when the trucks offloaded the first round of LO2 and once again, cryo vapors were visible. Because some of the liquid oxygen boils off during tanking, additional LO2 is required.

“This is a very important step in our path to launch, and we are thrilled to have cryo propellant return to the pad,” Blackwell-Thompson said.

The Ground Systems Development and Operations Program is preparing the pad for the launch of Exploration Mission-1, deep space missions and the Journey to Mars. Significant upgrades to the pad include a new flame trench beneath the pad and a new flame deflector.

Core Stage Forward Skirt Umbilical Installed on Mobile Launcher

Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, technicians install the core stage forward skirt umbilical on the mobile launcher.
Just north of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians install the core stage forward skirt umbilical on the mobile launcher.

Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, technicians install the core stage forward skirt umbilical on the mobile launcher.The Core Stage Forward Skirt Umbilical (CSFSU) recently was installed on the tower of the mobile launcher at NASA’s Kennedy Space Center in Florida, to prepare for the first launch of the agency’s Space Launch System (SLS) rocket with the Orion spacecraft atop.

The mobile launcher tower will be equipped with a number of lines, called umbilicals, which will connect to the SLS and Orion spacecraft and provide commodities during processing and preparation for launch of Exploration Mission-1.

Cranes and rigging were used to lift the CSFSU and install it at about the 220-foot-level on the tower. The CSFSU will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air and gaseous nitrogen to the SLS core stage forward skirt cavity.

The Ground Systems Development and Operations Program is overseeing installation of the umbilicals on the tower.

Photo credit: NASA/Kim Shiflett

Final Brick Installed in Launch Complex 39B Flame Trench for NASA’s Space Launch System

Final brick is installed in the flame trench at Launch Complex 39B at Kennedy Space Center.
A construction worker installs the final brick on the north side of the flame trench walls May 9, 2017 at Launch Complex 39B. Photo credit: NASA/Leif Heimbold

Intense heat and fire will fill the north side of the flame trench beneath the pad when NASA’s Space Launch System (SLS) rocket and Orion spacecraft lift off from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. A project to upgrade the walls of the flame trench to withstand these conditions recently was completed.

All of the new heat-resistant bricks now are in place in the flame trench below the surface of the pad. Construction workers installed the final brick May 9, completing about a year’s worth of work on the walls on the north side of the flame trench to support the launch of the (SLS) rocket and Orion spacecraft on deep-space missions, including the Journey to Mars.

About 96,000 heat-resistant bricks, in three different sizes, now are secured to the walls using bonding mortar in combination with adhesive anchors. The flame trench will be able to withstand temperatures of up to 2,000 degrees Fahrenheit at launch of the rocket’s engines and solid rocket boosters.

“The flame trench has withstood so many historical launches, and we are giving it new life to withstand many more,” said Regina Spellman, the launch pad senior project manager with the Ground Systems Development and Operations Program.

The north side of the flame trench is about 571 feet long, 58 feet wide and 42 feet high.

A new flame deflector soon will be installed that will safely contain and deflect the plume exhaust from the massive rocket to the north during launch. Two side flame deflectors, repurposed from space shuttle launches, will be refurbished and reinstalled at pad level on either side of the flame trench to help reduce damage to the pad and SLS rocket.