Final Brick Installed in Launch Complex 39B Flame Trench for NASA’s Space Launch System

Final brick is installed in the flame trench at Launch Complex 39B at Kennedy Space Center.
A construction worker installs the final brick on the north side of the flame trench walls May 9, 2017 at Launch Complex 39B. Photo credit: NASA/Leif Heimbold

Intense heat and fire will fill the north side of the flame trench beneath the pad when NASA’s Space Launch System (SLS) rocket and Orion spacecraft lift off from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. A project to upgrade the walls of the flame trench to withstand these conditions recently was completed.

All of the new heat-resistant bricks now are in place in the flame trench below the surface of the pad. Construction workers installed the final brick May 9, completing about a year’s worth of work on the walls on the north side of the flame trench to support the launch of the (SLS) rocket and Orion spacecraft on deep-space missions, including the Journey to Mars.

About 96,000 heat-resistant bricks, in three different sizes, now are secured to the walls using bonding mortar in combination with adhesive anchors. The flame trench will be able to withstand temperatures of up to 2,000 degrees Fahrenheit at launch of the rocket’s engines and solid rocket boosters.

“The flame trench has withstood so many historical launches, and we are giving it new life to withstand many more,” said Regina Spellman, the launch pad senior project manager with the Ground Systems Development and Operations Program.

The north side of the flame trench is about 571 feet long, 58 feet wide and 42 feet high.

A new flame deflector soon will be installed that will safely contain and deflect the plume exhaust from the massive rocket to the north during launch. Two side flame deflectors, repurposed from space shuttle launches, will be refurbished and reinstalled at pad level on either side of the flame trench to help reduce damage to the pad and SLS rocket.

New Ground Launch Sequencer Software Demonstrated in Launch Control Center

NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, Exploration Mission 1 launch director. Photo credit: NASA/Bill White
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA’s Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency’s Space Launch System and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, Exploration Mission 1 launch director. Photo credit: NASA/Bill White

A demonstration of the automated command and control software for NASA’s Space Launch System (SLS) rocket and Orion spacecraft, recently took place in Firing Room 3 in the Launch Control Center at the agency’s Kennedy Space Center in Florida. The software, called the ground launch sequencer, will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns.

The Ground and Flight Application Software Team, or GFAST, demonstrated the software for Charlie Blackwell-Thompson, launch director for the first integrated flight of the SLS and Orion spacecraft. Also attending were representatives from the NASA Test Director’s Office.

The software is in the advanced stages of development. It includes nearly all of the core capabilities required to support the initial use during Ignition Over-Pressure / Sound Suppression and follow-on tests through launch of the agency’s SLS rocket and Orion spacecraft. The suppression stage ensures the water dampening system initiates in the final second of launch countdown. It also produces the pattern and volume needed to dampen the pressure waves and acoustic environment caused by the firing of the SLS core stage RS-25 engines and solid rocket motors.

“We were pleased to be able to demonstrate the continued evolution of the ground launch sequencer for members of the launch team, and look forward to its first use in operations support,” said Alex Pandelos, operations project engineer for Launch Integration in the Ground Systems development and Operations Program (GSDO).

The software was developed by GSDO’s Command, Control and Communications teams at the center. Development of the software will continue, with a goal of beginning verification and validation of the software in summer 2017.

Pneumatic Systems Tested in Multi-Purpose Payload Facility for Orion

View of the service platform for Orion inside the Multi-Payload Processing Facility at Kennedy Space Center.
Engineers and technicians completed verification and validation testing of several pneumatic systems inside and outside the Multi-Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida. In view is the service platform for Orion spacecraft processing. The MPPF will be used for offline processing and fueling of the Orion spacecraft and service module stack before launch. Orion also will be de-serviced in the MPPF after a mission. The Ground Systems Development and Operations Program (GSDO) is overseeing upgrades to the facility. The Engineering Directorate led the recent pneumatic tests. Photo credit: NASA/Kim Shiflett

Testing of systems critical to preparing Orion for its first flight atop NASA’s Space Launch System rocket were successfully completed in the Multi-Payload Processing Facility (MPPF) at the agency’s Kennedy Space Center in Florida.

The MPPF is the location where fuel and commodities will be provided for the Orion spacecraft prior to launch. Orion also will be defueled and prepared for its next mission in this facility.

Pneumatics test team with banner.
Pneumatics test team members gather to mark the successful verification and validation of pneumatics testing in the Multi-Payload Processing Facility. Photo credit: NASA/Bonni Mcclure

Engineers and technicians completed a series of verification and validation tests of the pneumatic systems inside and outside the facility and confirmed they are ready to become operational, and that the systems meet requirements to support flight and ground systems that use pneumatic commodities.

“Completion of verification and validation testing of the pneumatic systems helps ensure that ground systems at Kennedy are ready to support Orion spacecraft processing,” said Stephen Anthony, pneumatic design engineering lead in the Environmental and Life Support Systems branch in the center’s Engineering Directorate.

Four pneumatic systems supply high pressure gases to various locations in the MPPF. These include gaseous nitrogen, gaseous helium and gaseous oxygen. They will be used to pressurize flight tanks on the Orion spacecraft. Another system, the breathing air system, provides an air source for personnel using Self-Contained Atmospheric Protection Ensembles, or SCAPE suits, which protect them during hazardous operations inside and outside the facility.

Leak tests of all of the pneumatic hardware installed inside and outside the MPPF were performed. Checkouts included verifying proper function of valves, regulators, pressure gauges and other components; verifying that the systems can be operated by command and control software; and performing flow tests of the systems to validate analysis and demonstrate that the systems meet requirements. A simulation of Orion flight tank fill operations also was performed.

“The pneumatic systems at the MPPF provide high pressure gases to many other ground and flight systems, making them vital to successful ground processing operations,” Anthony said.

The vast majority of the testing was completed between August 2016 and January 2017. Additional testing is scheduled this spring.

A team of about 60 NASA and contractor workers supported the tests, including design, operations, systems and project engineers, mechanics, technicians, logistics, safety, quality, configuration management, and construction of facilities personnel.

Crawler-Transporter 2 Takes Test Drive along Crawlerway

Crawler-transporter 2 with MLP-1 atop moves slowly along the crawlerway at Kennedy Space Center.NASA’s crawler-transporter 2 (CT-2) took a test drive along the crawlerway at Kennedy Space Center to determine the structural dynamics and loading environments of the crawler’s recent upgrades. The test was performed to ensure that the crawler is ready to support the first integrated flight of the agency’s Orion spacecraft atop the Space Launch System.

The unloaded CT-2 rolled from the crawler yard along the crawlerway to the Pad A/B split for the first leg of the trip and traveled back to the mobile launcher platform park site near the Vehicle Assembly Building. For the loaded test, the crawler picked up Mobile Launch Platform 1 at the park site and returned to the Pad A/B split. Engineers took measurements during the entire trek using accelerometers, strain gauges and pressure transducers. The data collected will be used to validate the dynamic model of the integrated SLS.

CT-2 is the vehicle that will carry the SLS rocket and Orion spacecraft on the mobile launcher to Pad B for launch. The behemoth vehicle recently was upgraded to support the heavier load of the SLS atop the mobile launcher.

Upgrades to the crawler included installation of new generators, gear assemblies, jacking, equalizing and leveling (JEL) hydraulic cylinders, roller bearings and brakes. Other systems also were upgraded.

The Ground Systems Development and Operations Program is overseeing upgrades to facilities and ground support equipment necessary to support the launch and deep space missions, including the Journey to Mars.

Photo credit: NASA/Leif Heimbold

First Umbilical Installed on Mobile Launcher for NASA’s Space Launch System and Orion

The OSMU is installed on the mobile launcher.The first launch umbilical for NASA’s Space Launch System (SLS) and Orion spacecraft was installed on the mobile launcher tower March 16 at the agency’s Kennedy Space Center in Florida. The Orion Service Module Umbilical, or OSMU, was installed high up on the tower at about the 260-foot level.

“Installation of the OSMU is a major milestone for the mobile launcher team,” said Sam Talluto, deputy project manager. “This is the first of multiple umbilicals and launch accessories that will be installed.”

The tower on the mobile launcher will be equipped with several connections, called launch umbilicals, which will connect to the SLS core stage and twin solid rocket boosters, the interim cryogenic propulsion stage and the Orion spacecraft. They will provide power, communications, coolant and fuel.

The OSMU will connect from the mobile launcher tower to the Orion service module. Prior to launch, the umbilical will transfer liquid coolant for the electronics and purge air/ GN2 for environmental control to the Orion service module that houses these critical systems to support the spacecraft. The umbilical also will provide purge air/GN2 for environmental control to the Launch Abort System. Before launch, the OSMU will tilt up and the umbilical lines will disconnect.

The first integrated launch of SLS and Orion, Exploration Mission 1, will send the spacecraft to a stable orbit beyond the moon. Orion will return to Earth and be recovered from the Pacific Ocean. The mission will demonstrate the integrated performance of the SLS rocket, Orion and ground support teams.

Photo credit: NASA/Leif Heimbold

First Integrated Flight Hardware for NASA’s Space Launch System Arrives in Florida

The ICPS for NASA's Space Launch System arrives in Florida.The first integrated piece of flight hardware for NASA’s Space Launch System rocket, the Interim Cryogenic Propulsion Stage, or ICPS, arrived March 8 at Cape Canaveral Air Force Station in Florida. The ICPS was shipped from the United Launch Alliance (ULA) facility in Decatur, Alabama aboard the Mariner barge.

The ICPS was offloaded and transported to the ULA Horizontal Integration Facility where it will be removed from its flight case to begin processing for launch at the ULA Delta Operations Center.

The ICPS is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter, and will provide some of the in-space propulsion. Its single RL-10 engine, powered by liquid hydrogen and oxygen, will generate 24,750 pounds of thrust to propel the Orion spacecraft out of Earth’s orbit during Exploration Mission 1 (EM-1).

The initial configuration of the SLS rocket with the ICPS will stand 322 feet tall, which is higher than the Statue of Liberty. The rocket will weigh 5.75 million pounds fueled and produce 8.8 million pounds of thrust at liftoff.

The first integrated launch of SLS and Orion will send the spacecraft to a stable orbit beyond the moon. Orion will return to Earth and be recovered from the Pacific Ocean. The mission will demonstrate the integrated performance of the SLS rocket, Orion and ground support teams.

Photo credit: NASA/Ben Smegelsky

Media View New Work Platforms for NASA’s Space Launch System

Media view new work platforms in Vehicle Assembly Building High Bay 3.Members of the news media recently viewed the ten levels of new work platforms inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Work to install the platforms came to conclusion Jan. 12 as the final work platform, A north, was lifted, installed and secured on its rail beam on the north wall of the high bay inside the iconic facility.

Twenty platform halves will surround NASA’s Space Launch System (SLS) rocket and the Orion spacecraft atop the mobile launcher and allow access during processing for missions, including the first flight test of Orion atop the SLS.

With the goal of being a multi-user facility, the new platforms were designed to be adjusted up and down, and in and out on their rail beams in order to accommodate the SLS and its solid rocket boosters, as well as other vehicles.

Design of the new platforms began in 2010. NASA awarded a contract to modify High Bay 3 to the Hensel Phelps Construction Co. of Greeley, Colorado, in March 2014. Hundreds of NASA and contractor workers were involved in the design, manufacture and installation of the platforms.

The platform levels are A, B, C, D, E, F, G, H, J and K. With the K-level being the lowest and the A-level the highest platforms.

The mobile launcher will be rolled into High Bay 3 in the fall for multi-element verification and validation testing with the platforms.

Photo credit: NASA/Kim Shiflett

First Solid Rocket Booster Forward Skirt for NASA’s Space Launch System Arrives at Kennedy Space Center

The left-hand forward skirt for the Space Launch System solid rocket boosters arrives at Hangar AF.The forward skirt for the left-hand solid rocket booster of NASA’s Space Launch System (SLS) rocket arrived at Cape Canaveral Air Force Station in Florida from booster prime contractor Orbital ATK’s facilities in Promontory, Utah on February 1, 2017. The left-hand forward skirt was transported to Hangar AF where it will continue refurbishment to support the first uncrewed flight test of the Orion spacecraft atop the SLS rocket from Launch Pad 39B at Kennedy Space Center.

The forward skirts for the left- and right-hand solid rocket boosters are located near the top, or forward assembly, of the boosters. The solid rocket boosters will generate a combined 7.2 million pounds of thrust to help power the massive SLS rocket off the launch pad.

The large hangar and several support buildings — as well as Orbital ATK and NASA engineers and technicians — provide the capabilities and expertise to prepare booster hardware for flight. Other parts of the right and left booster structures for the SLS rocket also are being readied for the first flight.

Photo credit: NASA/Kim Shiflett

Orion Crew Module Plumbing to Undergo Proof Pressure Testing

Orion spacecraft in the Neil Armstrong Operations and Checkout Building at Kennedy Space Center.The Orion crew module was moved from a work station to the proof pressure cell in the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Jan. 26 to prepare for testing.

Engineers and technicians with NASA and Orion manufacturer Lockheed Martin, will prepare the crew module for a series of proof pressure and leak tests to confirm the welded joints of the propulsion and Environmental Control and Life Support Systems (ECLSS) tubing are solid and capable of withstanding launch, re-entry and landing.

The Orion propulsion system includes the propellant and thrusters which support deorbit and re-entry of the spacecraft while the ECLSS provides cooling for interior and exterior components on the crew module throughout the mission.

Technicians will attach ground support equipment to the propulsion and ECLSS tubing, and use helium to pressurize the tubing to its proof pressure and to higher pressures at which the weld joints will be checked for leakage.

For its uncrewed flight test, Orion will be outfitted with most of the systems needed for a crewed mission during its first flight atop the agency’s Space Launch System rocket from Launch Pad 39B at Kennedy.

Photo credit: NASA/Ben Smegelsky

Test of Launch Umbilicals at Halfway Point for Mobile Launcher System

Testing is complete on the Core Stage Forward Skirt Umbilical at Kennedy Space Center.
Engineers and technicians gather at the Launch Equipment Test Facility with a signed banner to mark testing complete on the Core Stage Forward Skirt Umbilical. Photo credit: NASA/Cory Huston

NASA reached the halfway point on testing of the launch umbilicals for its Space Launch System (SLS) rocket and Orion spacecraft at the Launch Equipment Test Facility at the agency’s Kennedy Space Center in Florida.

The Core Stage Forward Skirt Umbilical (CSFSU) underwent testing for four months. A team of engineers and technicians with the Engineering Directorate and the Ground Systems Development and Operations Program, along with support contractors, conducted the tests. The CSFSU was attached to a Vehicle Motion Simulator at the LETF and tests confirmed the CSFSU load limits, its ability to disconnect before liftoff and that it is functioning properly and ready to be installed on the mobile launcher.

The CSFSU will be located at about the 180-foot level on the mobile launcher tower, above the vehicle liquid oxygen tank. During processing, the umbilical will be mated to the core stage forward skirt to provide commodities to the SLS rocket, and then disconnect and swing away before launch. Its main purpose is to provide conditioned air and gaseous nitrogen to the SLS Core Stage Forward Skirt.

The umbilical was transported to the mobile launcher area in December, where it is being prepared for installation on the tower of the mobile launcher.

The other umbilicals which have been tested at the LETF and are now at the mobile launcher area are the Orion Service Module Umbilical, two Aft Skirt Electrical Umbilicals, two Aft Skirt Purge Umbilicals, and three of the eight Vehicle Support Posts.