NASA Set to Launch Four CubeSats to Space Station

This photograph shows two women working on a small spacecraft.
NASA engineers Julie Cox and Kate Gasaway install a solar panel on the BurstCube spacecraft in this image. The work was conducted in the CubeSat Lab at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Photo credit: NASA/Sophia Roberts

NASA’s CubeSat Launch Initiative is sending a group of four small satellites, called CubeSats, to the International Space Station as ELaNa 51 (Educational Launch of Nanosatellites). These small payloads have been developed by NASA and universities and will be deployed from low Earth orbit. 

Once circling Earth, the satellites will help demonstrate and mature technologies meant to improve solar power generation, detect gamma ray bursts, determine crop water usage, and measure root-zone soil and snowpack moisture levels. 

The suite of satellites will hitch a ride aboard a SpaceX Falcon 9 rocket and Dragon spacecraft set to deliver additional science, crew supplies, and hardware for the company’s 30th commercial resupply services mission for NASA. Liftoff is targeted for 4:55 p.m. EDT Thursday, March 21, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. 

First Cornhusker State CubeSat 

The first CubeSat from Nebraska is the Big Red Sat-1, which aims to investigate and improve the power production ability of solar cells. It is built by a team of middle and high school students mentored by University of Nebraska-Lincoln undergraduate engineering students. 

The satellite measuring 1U, or one unit, (about four inches cubed), will test out Perovskite cells, a new type of solar cell designed to enhance power production with and without direct exposure to sunlight. The team will compare the power production to that of typical cells, called gallium arsenide solar cells, also flying on the CubeSat. 

Detecting Gamma Ray Bursts 

BurstCube is a NASA-developed 6U CubeSat designed to search the sky for brief flashes of high-energy light such as gamma-ray bursts, solar flares, and other hard X-ray transients. 

Long and short gamma ray bursts are stellar remnants that can be the result of some of the universe’s most powerful explosions like the collapse or collision of massive stars, or when a neutron star collides with a black hole. BurstCube will use a new kind of compact, low-power silicon photomultiplier array to detect the elusive bursts of light. 

With the ability to detect these brief flashes from space, BurstCube can help alert other observatories to witness changes in the universe as they happen. Astronomers can also benefit from the information because these bursts are important sources for gravitational wave discoveries. 

Rooting Out Earth Water Sources from Space 

The SigNals of Opportunity P-band Investigation, or SNoOPI, is a technology demonstration CubeSat designed to improve the detection of moisture levels on a global scale of underground root-zone and within snowpacks. 

Root zone soil moisture and snow water equivalent play critical roles in the hydrologic cycle, impacting agricultural food production, water management, and weather phenomena. When scientists understand the amount of water in the soil, crop growth can be accurately forecasted, and irrigation can become more efficient. 

The 6U CubeSat is collaboratively developed by NASA, Purdue University in Indiana, Mississippi State University, and the United States Department of Agriculture.  

The fourth in the suite of small satellites, the University of Hawaiʻi at Mānoa’s HyTI (Hyperspectral Thermal Imager) is also a 6U CubeSat designed to study water sources. 

Developed in partnership with NASA to map irrigated and rainfed cropland, HyTI is a pathfinder demonstration that packs the Hyperspectral Imager Instrument, temporal resolution thermal infrared imager focal plane technology, and high-performance onboard computing to help better understand crop water use and water productivity of major world crops. 

With these tools, HyTI can help develop a more detailed understanding of the movement, distribution, and availability of water and its variability over time and space, an important contribution to global food and water security issues.  

These payloads were selected through NASA’s CSLI, which provides U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and NASA centers with access to space at a low cost. 

Once the CubeSat selections are made, NASA’s Launch Services Program works to pair them with a launch that is best suited to carry them as auxiliary payloads. 

For more information about NASA’s CSLI, visit: 

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative 

ELaNa 50: What’s on Board?

LightCube team members inspect the CubeSat prior to integration into the deployer. From left to right: David Ordaz Perez, Chandler Hutchens, Sam Cherian, Christopher McCormick, Ashley Lepham, Raymond Barakat.
LightCube team members inspect the CubeSat prior to integration into the deployer. From left to right: David Ordaz Perez, Chandler Hutchens, Sam Cherian, Christopher McCormick, Ashley Lepham, Raymond Barakat. Photo credit: Jaime Sanchez de la Vega

On NASA’s next Educational Launch of Nanosatellites (ELaNa) mission, a pair of small satellites, called CubeSats, will hitch a ride on SpaceX’s 27th commercial resupply services mission to the International Space Station for NASA.

The ELaNa 50 complement of CubeSats will launch aboard the SpaceX Falcon 9 and Dragon spacecraft this March, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida, along with additional supplies, equipment, and science investigations to be delivered to the crew aboard the station.

The university-built CubeSats are going to space as part of NASA’s CubeSat Launch Initiative (CSLI). Once deployed, the CubeSats will demonstrate technologies to conduct atmospheric experiments and reduce space debris, as well as provide people on Earth the opportunity for an immediate and powerful connection with an object in space.

First Launch for The Natural State

The CSLI program will launch its first CubeSat from Arkansas. Developed at the University of Arkansas, Fayetteville, ARKSAT-1, is a CubeSat measuring 1U, or unit, (about 4 inches cubed). It will illuminate an LED from orbit and use a ground spectrometer to track and perform atmospheric measurements.

ARKSAT-1 team members Samuel Cano (left) and Charles Smith perform final checkout tests on the ARKSAT-1 flight model, with its electronics stack engineering model also shown.
ARKSAT-1 team members Samuel Cano (left) and Charles Smith perform final checkout tests on the ARKSAT-1 flight model, with its electronics stack engineering model also shown. Photo credit: University of Arkansas

“It might be the first time this instrument technology is purposefully designed to be done with a CubeSat,” said Adam Huang, principal investigator. “It could be developed into future satellite-based systems using cooperative formations of CubeSats.”

ARKSAT-1’s secondary objective sets out to demonstrate a way to help alleviate the problem of space debris with a lightweight Solid State Inflatable Balloon (SSIB) that can be used to deorbit small satellites after a mission ends. When the balloon on ARKSAT-1 inflates, it will greatly increase the ARKSAT-1’s aerodynamic drag, thereby helping the satellite re-enter and disintegrate safely in Earth’s atmosphere. If successful, the SSIB technology could help reduce the amount of time a small satellite remains “space junk” in low-Earth orbit after its mission has ended.

Helping Others See the Light

LightCube, a 1U CubeSat developed by Arizona State University, Tempe, in collaboration with Vega Space Systems and Mexico’s CETYS Universidad, features a flash bulb that can be controlled remotely by amateur radio operators on Earth who will be able to activate the satellite to produce a brief flash visible from the ground.

The LightCube CubeSat is inserted into the Nanoracks CubeSat Deployer.
The LightCube CubeSat is inserted into the Nanoracks CubeSat Deployer. Photo credit: Nanoracks

“LightCube provides potential users worldwide with the opportunity to telecommand a spacecraft and observe a tangible and immediate response in the night sky,” said Jaime Sanchez de la Vega, principal investigator. “The team hopes that this process inspires users to learn about space, satellites, and related concepts.”

The flash will appear at a brightness similar to the International Space Station, and several commonly available smartphone and computer apps will show when LightCube is overhead and where to look in the sky to see its flash.

Considering the observational environment, the LightCube team conducted an in-depth assessment to confirm that the brief flashes generated will not have a significant impact on astronomy.

In selecting the CubeSats for ELaNa 50, CSLI continues furthering its goal of providing U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and NASA centers with access to space at a low cost. Through CSLI, NASA’s Launch Services Program pairs selected CubeSats with launches best suited for each CubeSat’s mission and ready date, taking into consideration the planned orbit and any special constraints the CubeSat’s mission may have.

For more information about NASA’s CSLI, visit:

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative

NASA Awards Phantom Launch Services Task Order for CSLI Mission

NASA logo

NASA has awarded Phantom Space Corp. four task orders to launch four CubeSat Launch Initiative missions as part of the agency’s Venture-class Acquisition of Dedicated and Rideshare (VADR) launch services contract. The CubeSats will launch no earlier than 2024 on Phantom’s Daytona rocket.

Building on NASA’s previous procurement efforts to foster development of new launch vehicles for NASA payloads, VADR provides Federal Aviation Administration-licensed commercial launch services for payloads that can tolerate higher risk. By using a lower level of mission assurance, and commercial best practices for launching rockets, these highly flexible contracts help broaden access to space through lower launch costs.

Phantom is one of 13 companies NASA selected for VADR contracts in 2022. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contracts.

NASA to Launch Small Satellites on Next SpaceX Cargo Mission

Middle schoolers are sending their science fair project to space, one of five CubeSats on a ride-share on a Commercial Resupply Services, CRS-25. The CapSat-1 team are three 7th-grade students from the Weiss School in Palm Beach Gardens, Florida.
Middle schoolers are sending their science fair project to space, one of five CubeSats on a ride-share on the 25th Commercial Resupply Services, CRS-25. The CapSat-1 team are three 7th-grade students from the Weiss School in Palm Beach Gardens, Florida. Photo credit: Weiss School

NASA’s Launch Services Program is preparing to send five CubeSats to the International Space Station as part of the ELaNa 45 (Educational Launch of Nanosatellites) mission aboard SpaceX’s 25th Commercial Resupply Services (CRS-25) mission for NASA. Liftoff is scheduled for June 7 from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

The small satellites were selected through NASA’s CubeSat Launch Initiative, which provides low-cost access to space for U.S. educational institutions, NASA centers, and others to develop and demonstrate novel technologies in space and to inspire and grow the next generation of scientists, engineers, and technologists.

The CubeSats were developed by the Massachusetts Institute of Technology; The Weiss School in Palm Beach Gardens, Florida; NASA’s Ames Research Center in Silicon Valley, California; Embry-Riddle Aeronautical University in Daytona Beach, Florida; and the University of South Alabama in Mobile. The CubeSats will be deployed from the space station.

NASA has selected over 200 CubeSat missions from more than 100 unique organizations representing 42 states, the District of Columbia, and Puerto Rico through the CubeSat Launch Initiative since 2010. To date, 134 CubeSat missions have launched into space through ELaNa rideshare opportunities.

We Have Liftoff! ELaNa 41 Mission Rockets to Space

We have liftoff! Astra’s first operational satellite mission launched on the company’s Rocket 3.3 at approximately 1:50 p.m. EST from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida.

The launch marked the first mission of NASA’s Venture Class Launch Services Demonstration 2 (VCLS Demo 2) contract awarded by the agency’s Launch Services Program, based at Kennedy Space Center in Florida. Selected by NASA’s CubeSat Launch Initiative (CSLI), the four small satellites, or CubeSats, on board make up the Educational Launch of Nanosatellites (ELaNa 41) mission. CSLI provides small satellite developers at academic institutions, NASA centers, and non-profit organizations access to a low-cost pathway to conduct research in the areas of science, exploration, technology development, education or operations in space.

“Missions like these are critical for developing new launch vehicles in this growing commercial sector,” said Hamilton Fernandez, LSP mission manager. “I commend the Astra team for their dedication to supporting NASA’s mission.”

Astra Space’s Rocket 3.3 is an expendable, vertically launched two-stage liquid oxygen and kerosene rocket, designed to fit inside a standard shipping container and built to provide cost-effective access to space. The rocket consists of a first stage powered by five electric-pump-fed engines and an upper stage propelled by a single pressure-fed Aether engine.

Stay connected with the mission on social media, and let people know you’re following it on Twitter, Facebook, and Instagram by tagging these accounts:

Twitter: @NASA,  @NASA_LSP, @Astra
Facebook:  NASANASALSP
Instagram:  @NASA, @AstraSpace

Launch Window Opens Soon for ELaNa 41 Mission

Astra's Rocket 3.3
Astra’s Rocket 3.3 is prepared for launch at Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida. The rocket will carry four small spacecraft – called CubeSats – that comprise NASA’s Educational Launch of Nanosatellites (ELaNa 41) payload. Liftoff is scheduled for 2:10 p.m. EST on Feb. 5, 2022. The mission will mark the first operational satellite launch by Astra Space Inc. and the first launch under the NASA’s Venture Class Launch Services Demonstration 2 (VCLS Demo 2) contract. Managed by NASA’s Launch Services Program at Kennedy Space Center, VCLS was developed to provide increased access to space for developers of small satellites. Photo credit: John Kraus/Astra

Astra’s Rocket 3.3 is ready to lift off from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida, as part of the first mission under the NASA’s Venture Class Launch Services Demonstration 2 (VCLS Demo 2) contract. The three-hour launch window opens at 1 p.m. EST, with launch scheduled for 2:10 p.m. EST.

The first operational satellite launch for Astra Space will carry NASA’s Educational Launch of Nanosatellites (ELaNa 41) mission, sending four small satellites to space for the agency.

Astra Space Inc. was one of three companies selected as service providers to launch small satellites (SmallSats) to space, including CubeSats, microsats or nanosatellites, through VCLS Demo 2 contracts awarded by NASA’s Launch Services Program (LSP), based at Kennedy Space Center. LSP supports the agency’s CubeSat Launch Initiative (CSLI) by providing opportunities for small satellite payloads built by universities, high schools, and non-profit organizations to fly on upcoming launches.

ELaNa 41 will launch four CubeSats, designed and built by three universities and one NASA center. These include:

  • BAMA-1– University of Alabama, Tuscaloosa
  • INCA– New Mexico State University, Las Cruces
  • QubeSat– University of California, Berkeley
  • R5-S1 – NASA’s Johnson Space Center, Houston

The VCLS Demo 2 contractors will launch CubeSats selected through the CSLI to demonstrate a launch capability for smaller payloads that NASA anticipates it will require on a recurring basis for future science missions.

The Earth Science Division of NASA’s Science Mission Directorate  partnered with LSP to fund these contracts. The VCLS Demo 2 launches of small satellites can tolerate a higher level of risk than larger missions and will demonstrate – and help mitigate – risks associated with the use of new launch vehicles providing access to space for future small spacecraft and missions.

Stay connected with the mission on social media, and let people know you’re following it on Twitter, Facebook, and Instagram by tagging these accounts:

Twitter: @NASA,  @NASA_LSP, @Astra
Facebook:  NASANASALSP
Instagram:  @NASA, @AstraSpace

Launch Date Set for NASA CubeSat Mission

NASA’s Launch Services Program (LSP) has awarded multiple Venture Class Launch Services Demonstration 2 contracts to launch small satellites (SmallSats) to space, including CubeSats, microsats or nanosatellites. The first mission under the contract will lift off from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida in February 2022.
NASA’s Launch Services Program (LSP) has awarded multiple Venture Class Launch Services Demonstration 2 contracts to launch small satellites (SmallSats) to space, including CubeSats, microsats or nanosatellites. The first mission under the contract will lift off from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida in February 2022. Credits: NASA

NASA’s first mission under the agency’s Venture Class Launch Services (VCLS) Demonstration 2 contract is scheduled to launch four CubeSats to space no earlier than Feb. 5, 2022. The CubeSats, which make up the agency’s 41st Educational Launch of Nanosatellites (ELaNa) mission, will be the first VCLS launch from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida and Astra Space Inc’s first operational satellite launch aboard its Rocket 3.3.

“As the first VCLS mission to lift off from Florida’s Space Coast, this launch is ushering in new opportunities for CubeSat developers and small class launch vehicle providers,” said Hamilton Fernandez, mission manager supporting the Launch Services Program. “Through our commercial partners, NASA is providing dedicated rides to space for CubeSats, which helps meet the agency’s objectives of transporting smaller payloads and science missions into orbit.”

Three universities and one NASA center developed the CubeSats, which are a type of small satellite. They are:

  • BAMA-1– University of Alabama, Tuscaloosa

BAMA-1 is a technology demonstration mission that will conduct a flight demonstration of a drag sail module by rapidly deorbiting the satellite. Spacecraft equipped with drag sail technology will be able to deorbit reliably and rapidly, thus reducing space debris and the risk to operational satellites, space stations, and crewed vehicles.

  • INCA– New Mexico State University, Las Cruces

INCA (Ionospheric Neutron Content Analyzer) is a scientific investigation mission that will study the latitude and time dependencies of the neutron spectrum in low-Earth orbit for the first time to improve current space weather models and mitigate threats to space and airborne assets. The measurements will come from a new directional neutron spectrometer, which is being developed in conjunction with NASA’s Goddard Space Flight Center and the University of New Hampshire.

  • QubeSat– University of California, Berkeley

QubeSat is a technology demonstration mission. It will test and characterize the effects of space conditions on quantum gyroscopes using nitrogen-vacancy centers in diamond. Nitrogen-vacancy centers are nitrogen defect points in diamond with quantum properties that allow scientists to form gyroscopes that measure angular velocity. Nitrogen-vacancy center-based technologies are particularly well suited for space because of their high accuracy, small form factor, and radiation tolerance.

  • R5-S1 – NASA’s Johnson Space Center, Houston

R5-S1 is intended to demonstrate a fast and cost-effective way to build successful CubeSats in addition to demonstrating some technologies that are important to in-space inspection, which could help to make crewed space exploration safer and more efficient. R5-S1 could prove a cheaper way to demonstrate crucial technologies like high-performance computers, cameras, algorithms, and a new way for satellites to transmit pictures to the ground.

The ELaNa 41 mission CubeSats were selected through NASA’s CubeSat Launch Initiative (CSLI) and were assigned to the mission by NASA’s Launch Services Program based at Kennedy. CSLI provides launch opportunities for small satellite payloads built by universities, high schools, NASA Centers, and non-profit organizations.

To date, NASA has selected over 200 CubeSat missions, over 100 of which have been launched into space, with more than 30 mis­sions scheduled for launch within the next 12 months. The selected CubeSats represent participants from 42 states, the District of Columbia, Puerto Rico, and 102 unique organizations.

Stay connected with these CubeSat missions on social media by following NASA’s Launch Services Program on Facebook and Twitter.

ELaNa 38 CubeSats: Small Satellites Making a Big Impact

One of the solar panels being installed onto the GASPACS CubeSat during final assembly.
A student from Utah State University installs one of the solar panels onto the GASPACS CubeSat during final assembly. Photo credit: Jack Danos, Team Coordinator, Get Away Special Team, Utah State University

Launching aboard SpaceX’s 24th Commercial Resupply Services mission to the International Space Station, NASA’s 38th Educational Launch of Nanosatellites (ELaNa) mission strengthens the initiative’s aim of providing opportunities for small satellite payloads built by universities, high schools, NASA Centers, and non-profit organizations. Liftoff from NASA’s Kennedy Space Center in Florida is scheduled for Tuesday, Dec. 21, at 5:06 a.m. EST.

The DAILI spacecraft in its stowed configuration and ready for installation into the NanoRacks CubeSat Deployer.
The 6U DAILI spacecraft is shown in its stowed configuration before installation into the NanoRacks CubeSat Deployer. Photo credit: Nancy Pastor, The Aerospace Corporation

The four small satellites, or CubeSats, that comprise the 38th ELaNa mission include designs from Aerospace Corporation in El Segundo, California; Utah State University in Logan, Utah; Georgia Tech Research Corporation in Atlanta, Georgia; and NASA’s Kennedy.

CubeSats are a class of research spacecraft called nanosatellites, built to standard dimensions – Units or “U” – of 4 inches cubed. Often included as secondary payloads, CubeSats can be 1U, 2U, 3U, or 6U in size, typically weighing less than 3 pounds per U and designed to carry out unique tasks once deployed into low-Earth orbit.

The DAILI spacecraft is shown in its mission configuration with the solar arrays deployed and the Sunshade open. Photo credit: Nancy Pastor, The Aerospace Corporation

The Daily Atmospheric and Ionospheric Limb Imager (DAILI), built by Aerospace Corporation, is a linear 6U CubeSat that images the edge of Earth’s atmosphere to determine daytime density of atmospheric oxygen. The region of atmosphere it will study – roughly an altitude of 87 to 180 miles – is difficult to measure and produces uncertain atmospheric models. This investigation could help improve models informing our understanding of dynamics in the upper atmosphere, which can affect satellites and space debris in low-Earth orbit, while improved understanding of how Earth’s atmosphere works could contribute to better forecasting of weather and other atmospheric events.

The Aerospace Corporation – a national nonprofit corporation that operates a federally funded research and development center – designed and developed DAILI based on the company’s Remote Atmospheric and Ionospheric Detection System experiment, which was operational on the space station from 2009 to 2010, enabled DAILI to be designed. The DAILI CubeSat project is led by principal investigator Dr. James Hecht.

The completed GASPACS CubeSat.
The GASPACS CubeSat was built by students from Utah State. Photo credit: Jack Danos, Team Coordinator, Get Away Special Team, Utah State University

An undergraduate team at Utah State University developed the Get Away Special Passive Attitude Control Satellite (GASPACS), a 1U CubeSat with a primary mission to deploy a meter-long inflatable boom in low-Earth orbit and transmit a clear photograph of the deployed boom to Earth. Inflatable structures are compact and lightweight and therefore could serve many useful purposes in space. On this mission, the inflatable boom also will passively stabilize the rotation of the satellite due to aerodynamic drag in orbit.

The GASPACS CubeSat was developed by the university’s Get Away Special Team – an undergraduate, extracurricular research team within the physics department that gives students the opportunity to learn real-world engineering skills by effectively contributing to aerospace research. The team’s principal investigator is Dr. Jan Sojka, head of the university’s physics department.

Vibration Testing of the PATCOOL CubeSat Prototype.
The PATCOOL CubeSat Prototype undergoes vibration testing. Photo credit: NASA

The Passive Thermal Coating Observatory Operating in Low-Earth Orbit (PATCOOL) satellite is a 3U CubeSat sponsored by NASA and developed by students at the University of Florida to investigate the feasibility of using a cryogenic selective surface coating as a more efficient way to passively cool components in space. The team hopes in-orbit testing will validate what ground tests have demonstrated – that this coating should provide a much higher reflectance of the Sun’s irradiant power than any existing coating while still providing far-infrared power emission.

The ADvanced Autonomous MUltiple Spacecraft (ADAMUS) Laboratory at the University of Florida (UF), with funding from NASA’s Launch Services Program (LSP), developed the PATCOOL CubeSat, along with principal investigator, Brandon Marsell, branch chief for LSP’s Environments and Launch Approval, based at Kennedy.

The TARGIT satellite in its deployed state.
The TARGIT satellite is shown in its deployed state. Photo credit: W.C. Hobbs

The Tethering and Ranging mission of the Georgia Institute of Technology (TARGIT) is a 3U CubeSat that seeks to develop and test in orbit an imaging LiDAR system capable of fine detailed topographic mapping while also providing university students with hands-on education in space systems and applications. Additionally, the mission will demonstrate a series of experimental spacecraft technologies, including active tether and inflation systems, 3D-printed components, horizon sensors using low-resolution thermal imagers, and nanocarbon-based solar cells.

GAS team members Cooper Gowan, Andrew Nelson, and Carter Page showing the finished inflatable boom payload.
Utah State University’s GAS team members show the finished inflatable boom payload. Photo credit: Jack Danos, Team Coordinator, Get Away Special Team, Utah State University

Students from Georgia Tech’s School of Aerospace Engineering designed and developed the TARGIT CubeSat, under the tutelage of their professor and principal investigator, Dr. Brian C. Gunter.

The ELaNa 38 mission CubeSats were selected by NASA’s CubeSat Launch Initiative (CSLI) and assigned to the mission by LSP, based at Kennedy. CSLI provides launch opportunities for small satellite payloads built by universities, high schools, NASA Centers, and non-profit organizations.

To date, NASA has selected 220 CubeSat missions, 124 of which have been launched into space, with 37 more missions scheduled for launch within the next 12 months. The selected CubeSats represent participants from 42 states, the District of Columbia, Puerto Rico, and 102 unique organizations.

Stay connected with these CubeSat missions on social media by following NASA’s Launch Services Program on Facebook and Twitter.