Monthly Archives: September 2017

Drop Tests at NASA Langley Help Boeing’s Starliner Prepare to Land Astronauts

Posted on by .
NASA Langley/David C. Bowman

At NASA’s Langley Research Center in Hampton, Virginia, a mock-up of the Boeing CST-100 Starliner spacecraft goes through a series of land landing qualification tests to simulate what the actual spacecraft and crew members may experience while returning to Earth from space. The Starliner is being developed in collaboration with NASA’s Commercial Crew Program. Along with SpaceX’s Crew Dragon, the spacecraft is part of the agency’s effort to return America’s capability to launch astronauts from the agency’s Kennedy Space Center in Florida to the International Space Station. Photo credit: NASA Langley/David C. Bowman

At NASA’s Langley Research Center in Hampton, Virginia, a mock-up of the Boeing Starliner spacecraft has endured a series of land landing qualification tests to simulate what the actual spacecraft and crew members may experience while returning to Earth from space.

The Starliner is being developed in collaboration with NASA’s Commercial Crew Program. Along with SpaceX’s Crew Dragon, the spacecraft is part of the agency’s effort to return America’s capability to launch astronauts from Florida’s Space Coast to the International Space Station, or ISS.

The team recently kicked off a new series of land landing tests, which is designed to measure the vehicle’s airbag systems and how the crew responds to land landing scenarios.

“The accommodations inside the test article have become incrementally more flight-like throughout our test campaign,” said Boeing test engineer Preston Ferguson. “And the test dummies simulating crew members are very sophisticated, allowing us to identify responses through instrumentation on the head, neck and lumbar areas.”

The capsule – designed for landing on land, making it reusable up to ten times with a six-month turnaround time between launches – can accommodate up to five passengers to and from the space station. For NASA missions to station, the Starliner will carry up to four astronauts and about 220 pounds of cargo.”

“The first test series verified that the vehicle would be stable in all landing conditions,” said Richard Boitnott, Langley project test engineer. “We are constantly reaching higher levels of fidelity with our testing, and have flight-representative parts in critical locations.”

Read the full story here.

Save

First Look at the Crew Access Arm For Launch Complex 39A

Posted on by .
Astronauts Bob Behnken and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida

Astronauts Bob Behnken and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Photo Credit: SpaceX

Astronauts Bob Behnken and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The access arm will be installed on the launch pad, providing a bridge between the crew access tower and SpaceX’s Crew Dragon – or Dragon 2 – spacecraft for astronauts flying to the International Space Station on the company’s Falcon 9 rocket as part of NASA’s Commercial Crew Program.

The access arm is being readied for installation in early 2018. It will be installed 70 feet higher than the former space shuttle access arm on the launch pad’s Fixed Service Structure. SpaceX continues to modify the historic launch site from its former space shuttle days, removing more than 500,000 pounds of steel from the pad structure, including the Rotating Service Structure that was once used for accessing the payload bay of the shuttle. SpaceX also is using the modernized site to launch commercial payloads, as well as cargo resupply missions to and from the International Space Station for NASA. The first SpaceX launch from the historic Apollo and space shuttle site was this past February.

NASA’s Commercial Crew Program is working with private companies, Boeing and SpaceX, with a goal of once again flying people to and from the International Space Station, launching from the United States. Boeing is building the CST-100 Starliner to launch on an United Launch Alliance Atlas V rocket from Space Launch Complex 41. For information on Boeing and ULA’s work on Space Launch Complex 41, visit: https://www.nasa.gov/feature/crew-access-arm-installed-for-starliner-missions.