NASA to Purchase Additional Commercial Crew Missions

NASA insignia.

NASA intends to issue a sole source modification to SpaceX to acquire five additional crewed flights to the International Space Station as part of its Commercial Crew Transportation Capabilities (CCtCap) contract. The additional crew flights will allow NASA to maintain an uninterrupted U.S. capability for human access to the space station with two unique commercial crew industry partners.

In December 2021, NASA announced the extension of the International Space Station to 2030. With this extension, there is a need for additional crew rotation missions to sustain a safe and sustainable flight cadence throughout the remainder of the space station’s planned operations.

“Boeing’s Orbital Flight Test-2 went very well and we hope to be able to certify the Starliner system in the near future. However, we will need additional missions from SpaceX to implement our strategy of having each commercial provider flying alternating missions once per year,” said Phil McAllister, director, commercial space at NASA. “Our goal has always been to have multiple providers for crewed transportation to the space station. SpaceX has been reliably flying two NASA crewed missions per year, and now we must backfill those flights to help safely meet the agency’s long-term needs.”

NASA anticipates a potential need to use any additional SpaceX flights as early as 2026 to ensure dissimilar redundancy, maintain safe space station operations, and allow each company to work through any unforeseen issues that could arise as private industry builds operational experience with these new systems.

“The recent success of Boeing’s uncrewed flight test is helping to solidify NASA’s long-term goals,” said Steve Stich, manager, NASA’s Commercial Crew Program. “It’s critical we complete Starliner’s development without undue schedule pressure while working to position both Boeing and SpaceX for sustainable operations in the years ahead.”

SpaceX is currently NASA’s only certified commercial crew transportation provider. The company will fly its sixth rotational mission for NASA in the spring of 2023.

In October 2021, NASA issued a request for information from American industry capable of providing safe, reliable, and cost-effective human space transportation services to and from the International Space Station to ensure a continuous human presence aboard the microgravity laboratory. In February 2022, NASA awarded a firm fixed-price, indefinite-delivery/indefinite-quantity contract modification for the Crew-7, Crew-8, and Crew-9 missions to SpaceX.

After a thorough review of the long-term capabilities and responses from American industry, NASA’s assessment is that the SpaceX crew transportation system is the only one currently certified to maintain crewed flight to the space station while helping to ensure redundant and backup capabilities through 2030.

The current sole source modification does not preclude NASA from seeking additional contract modifications in the future for additional transportation services as needed.

In 2014, NASA awarded the CCtCap contracts to Boeing and SpaceX through a public-private partnership as part of the agency’s Commercial Crew Program. Under CCtCap, NASA certifies that a provider’s space transportation system meets the agency’s requirements prior to flying missions with astronauts. After years of development, commercial crew systems have achieved or are nearing operational readiness for regular crewed missions, including providing a lifeboat capability, to the space station.

 

Media Invited to Joint Teleconference for Boeing’s Orbital Flight Test-2

Starliner
A new service module was mated to a Boeing CST-100 Starliner crew module to form a complete spacecraft on March 12, 2022, in Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. Starliner will launch on a United Launch Alliance Atlas V rocket for Boeing’s second uncrewed Orbital Flight Test-2 (OFT-2) for NASA’s Commercial Crew Program. Photo credit: Boeing

NASA and Boeing will hold a joint media teleconference at noon EDT on Tuesday, May 3, to discuss the agency’s Boeing Orbital Flight Test (OFT-2) mission and provide an update on spacecraft readiness.

The teleconference includes the following participants:

  • Kathryn Lueders, associate administrator, Space Operations Mission Directorate, NASA Headquarters
  • Steve Stich, manager, Commercial Crew Program, NASA’s Kennedy Space Center in Florida
  • Joel Montalbano, manager, International Space Station Program, NASA’s Johnson Space Center in Houston
  • Michelle Parker, vice president and deputy general manager, Space and Launch, Boeing
  • Mark Nappi, vice president and program manager, CST-100 Starliner, Boeing

OFT-2 is scheduled to launch on Thursday, May 19, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Boeing’s uncrewed CST-100 Starliner will launch atop a United Launch Alliance Atlas V rocket for its flight test to the International Space Station as part of NASA’s Commercial Crew Program.

Starliner is expected to arrive at the space station for docking about 24 hours later with more than 500 pounds of NASA cargo and crew supplies. After a successful docking, Starliner will spend five to 10 days aboard the orbiting laboratory before returning to Earth in the western United States. The spacecraft will return with nearly 600 pounds of cargo, including reusable Nitrogen Oxygen Recharge System (NORS) tanks that provide breathable air to station crew members.

Media wishing to participate in the OFT-2 mission overview news teleconference must RSVP by 11 a.m., Tuesday, May 3, by emailing the Kennedy newsroom at ksc-newsroom@mail.nasa.gov.

More details about the mission and NASA’s commercial crew program can be found by following the commercial crew blog, @commercial_crew and commercial crew on Facebook.

NASA, SpaceX Provide Update on Crewed Space Station Mission

Crew-3 Launch
A SpaceX Falcon 9 rocket carrying the company’s Crew Dragon spacecraft is launched on NASA’s SpaceX Crew-3 mission to the International Space Station with NASA astronauts Raja Chari, Tom Marshburn, Kayla Barron, and ESA (European Space Agency) astronaut Matthias Maurer onboard, Wednesday, Nov. 10, 2021, at NASA’s Kennedy Space Center in Florida. NASA’s SpaceX Crew-3 mission is the third crew rotation mission of the SpaceX Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. Chari, Marshburn, Barron, Maurer launched at 9:03 p.m. EST from Launch Complex 39A at the Kennedy Space Center to begin a six month mission onboard the orbital outpost. Photo Credit: (NASA/Joel Kowsky)

NASA and SpaceX provided an update Feb. 4 on the status of preparations on the agency’s Crew-4 mission to the International Space Station. As part of the news conference, NASA and SpaceX answered media questions on Crew Dragon’s parachutes and work ahead of its next crew launch with NASA astronauts Kjell Lindgren, Robert Hines, and Jessica Watkins, as well as with ESA (European Space Agency) astronaut Samantha Cristoforetti.

Listen to a full replay of the news conference, and read the agency’s statement below:

Crew safety remains a top priority for NASA. The agency and SpaceX carefully and methodically monitor the operational parachute performance on all crew and cargo flights to increase safety and reliability.

During the return of the SpaceX CRS-24 mission, teams observed a single main parachute that lagged during inflation like the return of the Crew-2 mission. The vertical descent rate of both flights was within the system design margins at splashdown, and all four main parachutes fully opened prior to splashdown on both missions.

With the commonality between Dragon spacecraft, the mission teams prioritize parachute imagery during return and recovery of the parachutes following splashdown. As partners, NASA and SpaceX jointly review the imagery data and perform physical inspection of the drogue and main parachutes after flight. The inflation model also continues to be updated to better characterize and understand margins and splashdown conditions. This review of flight data and parachute performance models will be completed prior to the launch of the Crew-4 mission and the return of Crew-3 astronauts from the International Space Station.

NASA and SpaceX are completing the parachute analysis as part of the standard postflight reviews conducted at the end of each mission. The results of the data reviews are discussed as part of joint engineering and program control boards and findings presented at the agency’s flight readiness review in advance of the next crew mission. NASA and SpaceX still are targeting launch of the Crew-4 mission Friday, April 15, to the International Space Station.

NASA, Boeing Continue to Work Toward Understanding Starliner Service Module Valve Performance Issue

NASA Boeing OFT-2 Starliner spacecraft
On July 29, 2021, Boeing’s CST-100 Starliner spacecraft is shown on top of the United Launch Alliance (ULA) Atlas V rocket in ULA’s Vertical Integration Facility.

NASA continues to work side-by-side with Boeing to understanding the CST-100 Starliner’s service module valve performance, including the unexpected indications some of the valves were in the closed position during its Aug. 3 launch attempt of Orbital Flight Test-2 (OFT-2).

With troubleshooting ongoing in the United Launch Alliance Vertical Integration Facility at NASA’s Kennedy Space Center in Florida, where Starliner will be powered and run through various procedures to help understand the issue, NASA will move forward with the launch and berthing of an important cargo mission to the International Space Station.

Northrop Grumman’s Cygnus spacecraft is scheduled to launch on the company’s Antares rocket at 5:56 p.m. Tuesday, Aug. 10, from NASA’s Wallops Flight Facility in Wallops Island, Virginia, with capture and berthing scheduled two days later at about 6:10 a.m. EDT Thursday, Aug. 12.

In parallel, managers and engineers with NASA and Boeing will continue to evaluate schedules based on where the troubleshooting efforts take them before deciding when the next official launch for the OFT-2 mission will take place.

NASA, Boeing Continue Starliner Data Analysis

Atlas V rocket with Starliner on launch pad
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen on the launch pad on Thursday, July 29, 2021, at Space Launch Complex 41 in preparation for the Orbital Flight Test-2 (OFT-2) mission at Cape Canaveral Space Force Station in Florida. Photo Credit: (NASA/Aubrey Gemignani)

NASA and Boeing are continuing to work through steps to determine what caused the unexpected valve position indications on the CST-100 Starliner propulsion system.

The United Launch Alliance Atlas V with the Starliner spacecraft on top will be returned to its Vertical Integration Facility (VIF) at Launch Complex-41 on Cape Canaveral Space Force Station Thursday where engineers will have direct access to Starliner for continued troubleshooting.

The data will drive any corrective measures that may be necessary to ensure Starliner is ready for launch. When NASA’s Commercial Crew Program and Boeing Space agree the issue is resolved, a new launch opportunity will be selected, taking into account the readiness of all parties involved.

“The Boeing and NASA teams are working methodically to understand what caused the valve indications on the Starliner service module propulsion system,” Steve Stich, manager of the Commercial Crew Program, said. “The troubleshooting in the Vertical Integration Facility will help focus on potential causes and next steps before we fly the OFT-2 mission.”

Early in the launch countdown for the Tuesday, Aug. 3 launch attempt, engineers detected indications that not all of Starliner’s propulsion system valves were in the proper configuration needed for launch of the company’s second uncrewed orbital flight test to the International Space Station, a mission designed to test the end-to-end capabilities of the crew-capable system as part of NASA’s Commercial Crew Program.

Mission teams decided to halt the countdown to further analyze the issue, which was conducted later Tuesday via several steps to troubleshoot the incorrect valve indications, including cycling the service module propulsion system valves.

After presenting the data to NASA and Boeing managers, it was decided to relocate the Atlas V and Starliner to the VIF for further inspection and testing where access to the spacecraft is available. Engineering teams have ruled out a number of potential causes, including software, and the direct access is required to continue the assessment.

“This mission is extremely important for the Commercial Crew Program on the path to the Boeing Crewed Flight Test,” Stich said. “We will fly the mission when we are ready. I am extremely proud of the NASA and Boeing teams for their professionalism, perseverance, and methodical approach to solving complex problems.”

NASA and Boeing will take whatever time is necessary to ensure Starliner is ready for its important uncrewed flight test to the space station and will look for the next available opportunity after resolution of the issue.

NASA, Boeing Standing Down on Aug. 4 Starliner Launch Attempt

NASA and Boeing are standing down from the Wednesday, Aug. 4, launch attempt of the agency’s Orbital Flight Test-2 to the International Space Station as mission teams continue to examine the cause of the unexpected valve position indications on the CST-100 Starliner propulsion system.

Early in the launch countdown for the Aug. 3 attempt, mission teams detected indications that not all valves were in the proper configuration needed for launch. Mission teams decided to halt the countdown to further analyze the issue.

NASA and Boeing worked through several steps to troubleshoot the incorrect valve indications, including cycling the service module propulsion system valves, within the current configuration of the Starliner and United Launch Alliance Atlas V rocket at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida.

Mission teams have decided to roll the Atlas V and Starliner back to the Vertical Integration Facility (VIF) for further inspection and testing where access to the spacecraft is available. Boeing will power down the Starliner spacecraft this evening. The move to the VIF is expected to take place as early as tomorrow.

Engineering teams have ruled out a number of potential causes, including software, but additional time is needed to complete the assessment.

NASA and Boeing will take whatever time is necessary to ensure Starliner is ready for its important uncrewed flight test to the space station and will look for the next available opportunity after resolution of the issue.