Author Archives: Amanda Griffin

First Look at the Crew Access Arm For Launch Complex 39A

Posted on by .
Astronauts Bob Behnken and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida

Astronauts Bob Behnken and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Photo Credit: SpaceX

Astronauts Bob Behnken and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The access arm will be installed on the launch pad, providing a bridge between the crew access tower and SpaceX’s Crew Dragon – or Dragon 2 – spacecraft for astronauts flying to the International Space Station on the company’s Falcon 9 rocket as part of NASA’s Commercial Crew Program.

The access arm is being readied for installation in early 2018. It will be installed 70 feet higher than the former space shuttle access arm on the launch pad’s Fixed Service Structure. SpaceX continues to modify the historic launch site from its former space shuttle days, removing more than 500,000 pounds of steel from the pad structure, including the Rotating Service Structure that was once used for accessing the payload bay of the shuttle. SpaceX also is using the modernized site to launch commercial payloads, as well as cargo resupply missions to and from the International Space Station for NASA. The first SpaceX launch from the historic Apollo and space shuttle site was this past February.

NASA’s Commercial Crew Program is working with private companies, Boeing and SpaceX, with a goal of once again flying people to and from the International Space Station, launching from the United States. Boeing is building the CST-100 Starliner to launch on an United Launch Alliance Atlas V rocket from Space Launch Complex 41. For information on Boeing and ULA’s work on Space Launch Complex 41, visit: https://www.nasa.gov/feature/crew-access-arm-installed-for-starliner-missions.

Dream Chaser Spacecraft Marks Critical Step Ahead of Free Flight Test

Posted on by .

Sierra Nevada's Dream Chaser Captive Carry Test on 8/30/17.Sierra Nevada Corporation’s Dream Chaser completed an important step toward orbital flight on Wednesday, with a successful captive carry test at NASA’s Armstrong Flight Research Center in California, located on Edwards Air Force Base. A helicopter successfully carried a Dream Chaser test article, which has the same specifications as a flight-ready spacecraft, to the same altitude and flight conditions of an upcoming free flight test.

The captive carry is part of a series of tests for a developmental space act agreement SNC has with NASA’s Commercial Crew Program. The data from the tests help SNC validate the aerodynamic properties, flight software and control system performance of the Dream Chaser.

The Dream Chaser is a lifting-body, winged spacecraft that will fly back to Earth in a manner similar to NASA’s space shuttles. The successful captive carry test clears the way for a free flight test of the spacecraft later this year in which the uncrewed Dream Chaser will be released to glide on its own and land.

The test campaign will also help finalize the design for cargo version of the Dream Chaser in preparation for the spacecraft to deliver cargo to the International Space Station under NASA’s Commercial Resupply Services 2 (CRS2) contract beginning in 2019. The cargo Dream Chaser will fly at least six resupply missions to and from the space station by 2024.

Recovery and Rescue Teams Practice with Full-Size Crew Dragon Trainer

Posted on by .

SpaceX, NASA and Air Force personnel who will help astronauts out of the SpaceX Crew Dragon spacecraft returning from a mission to the International Space Station have begun practicing for that using a full-size model of the spacecraft. In certain unusual recovery situations, SpaceX may need to work with the U.S. Air Force to send parajumpers to recover astronauts from the capsule in the water. Recently, the Recovery Trainer was lowered into the Indian River Lagoon near NASA’s Kennedy Space Center so Air Force pararescue and others could learn techniques for getting aboard the spacecraft and rescuing the astronauts.

Such rescue practice is typical of all human missions because it gives astronauts and support teams many opportunities to practice and refine the critical steps in safely rescuing the crew in a contingency situation. A number of procedures will be developed and then practiced over time to deal with recoveries in many different conditions.

SpaceX is developing the Crew Dragon in partnership with NASA’s Commercial Crew Program to carry astronauts to the International Space Station. The Recovery Trainer was built by SpaceX and subsequently modified by  Kennedy’s Prototype Lab to SpaceX specifications. The same dimensions as the outside mold line of a Crew Dragon, it has indicators where thrusters will be and other markings on the exterior. Inside, the crew area matches that of the operational spacecraft and includes an instrument panel.

SpaceX's Recovery Trainer was lowered into the Indian River Lagoon near NASA’s Kennedy Space Center so Air Force pararescue and others could learn techniques for getting aboard the spacecraft and rescuing the astronauts.

Photo Credit: SpaceX

NASA’s Commercial Crew Program Target Flight Dates

Posted on by .

The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation. NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station. Two of those demonstrations are uncrewed flight tests, known as Orbital Flight Test for Boeing, and Demonstration Mission 1 for SpaceX. After the uncrewed flight tests, both companies will execute a flight test with crew prior to being certified by NASA for crew rotation mission. The following schedule reflects the most recent publicly-releasable dates for both providers.

Targeted Test Flight Dates:
Boeing Orbital Flight Test: June 2018
Boeing Crew Flight Test: August 2018
SpaceX Demonstration Mission 1: February 2018
SpaceX Demonstration Mission 2 (crewed): June 2018