NASA, SpaceX Test Pad Emergency Egress System

NASA and SpaceX conduct a formal verification of the company's emergency escape system on Sept. 18, 2019 at Launch Complex 39A.
NASA astronauts Shannon Walker, in front, and Bob Behnken participated in the exercise to verify the crew can safely and quickly evacuate from the launch pad in the unlikely event of an emergency before liftoff of SpaceX’s first crewed flight test, called Demo-2. During the escape verification, Walker and Behnken pass through the water deluge system on the 265-foot level of the crew access tower. Photo credit: SpaceX

NASA and SpaceX conducted a formal verification of the company’s emergency escape, or egress, system at Kennedy Space Center’s Launch Complex 39A in Florida on Sept. 18, 2019. NASA astronauts Bob Behnken and Shannon Walker participated in the exercise to verify the crew can safely and swiftly evacuate from the launch pad in the unlikely event of an emergency before liftoff of SpaceX’s first crewed flight test, called Demo-2.

At tower level on the pad, Walker and Behnken practiced loading into a slidewire basket and simulating an emergency escape to ground level.
At tower level on the pad, Walker and Behnken practiced loading into a slidewire basket and simulating an emergency escape to ground level. Photo credit: SpaceX

“This demonstration allowed all the various teams responsible for ground operations, system design, ground safety and emergency management to observe and verify the system is ready for operational use,” said Steve Payne, launch operations integrator for the agency’s Commercial Crew Program. “It’s a system we hope we never have to use, but we have to be prepared for every scenario.”

During the exercise, Behnken and Walker demonstrated two escape methods to show the crew could leave the 265-foot-level of the launch tower quickly. One method was an expedited non-emergency egress, where the crew started at the end of the crew access arm, called the white room, as if they just exited the capsule, and descended the crew access tower by taking the elevator to the base of the launch pad. Then, they were picked up by the pad team to be returned to crew quarters.

The other method involved an emergency egress, where the crew and pad team started at the crew access arm and escape to the ground using the slidewire baskets, with all alarms and fire suppression systems activated. From there, they boarded an armored vehicle that took them to safety.

“Safety of crew members is the top priority,” Walker said. “This was a great opportunity to test the emergency egress system and procedures on the pad.”

SpaceX provided a demonstration of activating alarms and beacons, putting on emergency breathing air bottles and activating the water deluge system on the crew access level, followed by egress from the white room. The astronauts also practiced loading into the baskets. The release mechanisms were also tested, and a weighted empty basket was sent down the length of the slidewire cable to the landing area.

The slidewire baskets have had a number of design improvements since they were used during the shuttle era. A new braking system was added that regulates the speed as astronauts descend the slidewire, which makes for a smoother ride for the crew.  Adjustments to the system have also made dismounting the slidewire baskets much easier than with the previous design.

Also, the platform used for emergency escape on the tower was relocated and reinstalled to the 265-foot-level, up 70 feet from its original shuttle-era location, in order to accommodate a taller launch vehicle.

“If the emergency egress system were ever to be needed to escape from a hazardous event, we want to have complete confidence that it will operate as designed and get our flight crew and pad personnel off the tower quickly and safely,” Payne said.

The verification team also included personnel from the Astronaut Office at NASA’s Johnson Space Center in Houston, NASA Flight Surgeons, SpaceX systems engineers, Kennedy Aero Medical, Commercial Crew Program Safety, and other observers.

“Each time today when we headed down the crew access arm, I couldn’t help but think about what it will be like to strap into Dragon on launch day,” Behnken said. “It’s exciting to have this verification test behind us on our way to the SpaceX Demo-2 mission.”

As commercial crew providers SpaceX and Boeing begin to make regular flights to the space station, NASA will continue to advance its mission to go beyond low-Earth orbit and establish a human presence on the Moon with the ultimate goal of sending astronauts to Mars.

Commercial Crew Program Testing Fosters Improvements in Parachute Safety

Crew Dragon parachutes successfully deploy during a development test.

As part of NASA’s Commercial Crew Program, SpaceX has been developing and testing the Crew Dragon parachute system, which is comprised of two drogue parachutes and four main ring-sail parachutes—the same type of parachutes that have been commonly and successfully used for human spaceflight in the past.

SpaceX conducts a Crew Dragon parachute test.

In the last four years, SpaceX has completed 30 drop tests and 18 system-level tests of their parachute system, including the successful Demo-1 mission flight test. Through this test campaign, the SpaceX team, in partnership with NASA, has gained insight that could change the way parachutes are developed, tested and integrated into spacecraft design. Throughout this process, NASA has shared lessons learned from its own human spaceflight heritage to assist in parachute development.

One of the most relevant benefits originating from the rigorous, multi-year parachute testing campaign is a better understanding of how to safely design and operate parachute clusters. Specifically, NASA and SpaceX now have greater insight into what is termed “Asymmetry Factor,” an integral part of how safety in design is measured and weighed. This asymmetry factor is an indicator of uneven load distribution between individual suspension lines attached to the parachute canopy. As a cluster of parachutes is deployed, the first parachute to open may crowd or bump others as they open up, causing an uneven load distribution on the main parachutes. If the lines or the joints are not designed to account for the unevenness or asymmetry, they might get damaged or even fail.

Crew Dragon parachutes successfully deploy during a development test.

In April 2019, SpaceX performed a developmental test designed to simulate the loss of one of its four main parachutes. During the test, there was an unexpected failure which has offered a unique insight into parachute loading and behavior. The test results have ultimately provided a better understanding of parachute reliability and caused a closer examination of the current industry standard used to calculate the asymmetry factor.

SpaceX is using this new data to calculate structural margins and influence parachute design. The unique results allow more accurate prediction of reliability in the flight parachute configuration. In fact, this new data further verified SpaceX’s most recent successful developmental test, which simulated a pad abort, where the vehicle is tumbling at low altitude before parachute deploy.

Through testing, SpaceX has sought to better characterize margins on their current and future parachute designs, using more robust materials, operational mitigations, and continuation of model refinement based on data from almost 50 recent tests and counting, 19 Cargo Dragon parachute landings, and the successful Demo-1 mission, to ensure that Crew Dragon has the safest parachute design possible. Additionally, these new findings are being shared within NASA to ensure that all human spaceflight applications are assessed for adequate margin and reliability.

NASA’s Commercial Crew Program is a public-private partnership with Boeing and SpaceX to take the experience of NASA and couple it with new technology and designs being pioneered by private industry. Together, we are making space travel safer and available for all. This is one of many steps that advances NASA’s goal to return human spaceflight launches to U.S. soil on commercially-built and operated American rockets and spacecraft and prepare for a human presence on the Moon with the ultimate goal of sending astronauts to Mars.

NASA, Boeing Perform Landing and Recovery Rehearsals in New Mexico

Teams from NASA, Boeing and the White Sands Missile Range, rehearse landing and crew extraction from Boeing's CST-100 Starliner, which will be used to carry humans to the International Space Station, on Wednesday, Sept. 11, 2019 at the White Sands Missile Range outside Las Cruces, New Mexico.
Teams from NASA, Boeing and the White Sands Missile Range, rehearse landing and crew extraction from Boeing’s CST-100 Starliner, which will be used to carry humans to the International Space Station, on Wednesday, Sept. 11, 2019 at the White Sands Missile Range outside Las Cruces, New Mexico. Photo credit: NASA/Bill Ingalls

Boeing, NASA and the U.S. Army conducted exercises, known as mission dress rehearsals, for Boeing’s upcoming CST-100 Starliner missions to the International Space Station. This series of rehearsals at the White Sands Missile Range in New Mexico focused on the landing and recovery aspect of Starliner’s mission, and was one of three of Boeing’s formal dress rehearsals that took place over the last couple of weeks as part of NASA’s Commercial Crew Program.

Unlike any other American-made orbital crew capsule, Boeing’s CST-100 Starliner is designed to land on land, and is expected to touch down at one of five potential landing zones in the western United States, including two at White Sands, New Mexico. During last week’s integrated rehearsal, teams practiced recovering Starliner and extricating crews in more than a half dozen different landing scenarios covering both the upcoming uncrewed and crewed test flights. The rehearsals included all of the recovery personnel and equipment necessary to locate, safe and cool the spacecraft prior to opening the hatch.

Astronauts Mike Fincke and Nicole Mann of NASA and Chris Ferguson from Boeing observed a few of the exercises to better understand what will be happening outside Starliner before ground teams can open the hatch and officially welcome them back to Earth. During the final “run-for-record,” obstacles were introduced in order to simulate an emergency scenario, in which the team succeeded at locating the Starliner and opening the hatch in less than an hour.

Using a convoy of vehicles Boeing uses to recover their spacecraft after landing and a boiler plate test article of the Starliner capsule, the teams worked through the steps necessary to safe the vehicle and get future crew members out of the Starliner to return home.
The teams worked through the steps necessary to safe the vehicle and get future crew members out of the Starliner to return home. Photo credit: NASA/Bill Ingalls

Earlier rehearsals included simulating a Starliner launch and ascent through docking to the space station, as well as undocking from station through landing the spacecraft on land in the western United States.

These exercises are a necessary step in preparing the teams for all aspects of a mission from launch to landing. This series of rehearsals has taken place ahead of Boeing’s uncrewed Orbital Flight Test to the space station, in which the Starliner will launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

As commercial crew providers Boeing and SpaceX begin to make regular flights to the space station, NASA will continue to advance its mission to go beyond low-Earth orbit and establish a human presence on the Moon with the ultimate goal of sending astronauts to Mars.