NASA Stacks First Artemis II Segment on Mobile Launcher

Engineers and technicians with the Exploration Ground Systems Program stack the first Moon rocket segment – the left aft assembly for the Artemis II SLS (Space Launch System) solid rocket booster onto mobile launcher 1 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center on Wednesday, Nov. 20, 2024.

Engineers and technicians inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida stacked the first segment of the Artemis II SLS (Space Launch System) rocket boosters onto mobile launcher 1.

Comprising 10 segments total – five segments for each booster – the SLS solid rocket boosters arrived via train to NASA Kennedy in September 2023 from Northrop Grumman’s manufacturing facility in Utah. The booster segments underwent processing in the spaceport’s Rotation, Processing and Surge Facility before being transferred to the NASA’s iconic VAB for stacking operations.

Technicians inside the 525-foot-tall facility used an overhead crane to lift the left aft assembly onto the mobile launcher. Up next, workers will install the right aft assembly, placing it carefully onto the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.

The first components of the Artemis II Moon rocket to be stacked, the solid rocket boosters will help support the remaining rocket segments and the Orion spacecraft during final assembly. At launch, the 177-foot-tall twin solid rocket boosters provide more than 75 percent of the total SLS thrust during liftoff from NASA Kennedy’s Launch Pad 39B.

NASA’s Rocket On Roll: Core Stage Arrives at Vehicle Assembly Building

After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Once inside, SLS will be prepared for integration atop the mobile launcher ahead of the Artemis II launch.
After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Photo credit: NASA/Isaac Watson

NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.

Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.

Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations.

In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.

The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.

NASA’s Artemis II Orion Spacecraft Prepares for Vacuum Testing

The Artemis II Orion spacecraft is pictured surrounded by the metal walls of the altitude chamber
Technicians used a 30-ton crane to lift NASA’s Orion spacecraft on Friday, June 28, 2024, from the Final Assembly and System Testing (FAST) cell to the altitude chamber inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. The spacecraft, which will be used for the Artemis II mission to orbit the Moon, underwent leak checks and end-to-end performance verification of the vehicle’s subsystems.

NASA’s Orion spacecraft for the Artemis II mission was lifted out of the Final Assembly and System Testing cell on June 28 inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. The integrated spacecraft has been undergoing final rounds of testing and assembly, including end-to-end performance verification of its subsystems and checking for leaks in its propulsion systems.

A 30-ton crane returned Orion into the recently renovated altitude chamber where it underwent electromagnetic testing. The spacecraft now will undergo a series of vacuum chamber qualification testing. The tests will subject the spacecraft to a near-vacuum environment by removing air, thus creating a space where the pressure is extremely low. This results in no atmosphere, similar to the one the spacecraft will experience during future lunar missions.

Testing will span approximately a week, with technicians collecting data from the spacecraft’s chamber, cabin, and the environmental control and life support system to test spacesuit functionality. The data recorded during these tests will be used to qualify the spacecraft to safely fly the Artemis II astronauts through the harsh environment of space.

Artemis II Orion Crew and Service Modules Joined Together

Mating of the crew and service modules for the Artemis II Orion spacecraft was recently completed at NASA’s Kennedy Space Center in Florida.
Intergration of the crew and service modules for the Artemis II Orion spacecraft was recently completed at NASA’s Kennedy Space Center in Florida. Photo credit: NASA

On Oct. 19, the Orion crew and service modules for the Artemis II mission were joined together inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.

After successfully completing hardware installations and testing over the past several months, engineers connected the two major components of Orion that will fly NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen on a mission around the Moon and bring them home safely.

Now that the crew and service modules are integrated, the team will power up the combined crew and service module for the first time. After power on tests are complete, Orion will begin altitude chamber testing, which will put the spacecraft through conditions as close as possible to the environment it will experience in the vacuum of deep space.

Artemis II Orion Crew Module Acoustic Testing Complete

Artemis II crew members, shown inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, check out their Orion crew module on Aug. 8, 2023. From left are: Victor Glover, pilot; Reid Wiseman, commander; Christina Hammock Koch, mission specialist; and Jeremy Hansen, mission specialist. The crew module is undergoing acoustic testing ahead of integration with the European Service Module. Artemis II is the first crewed mission on NASA’s path to establishing a long-term lunar presence for science and exploration under Artemis.
Artemis II crew members, shown inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, check out their Orion crew module on Aug. 8, 2023. From left are: Victor Glover, pilot; Reid Wiseman, commander; Christina Hammock Koch, mission specialist; and Jeremy Hansen, mission specialist. The crew module is undergoing acoustic testing ahead of integration with the European Service Module. Artemis II is the first crewed mission on NASA’s path to establishing a long-term lunar presence for science and exploration under Artemis. Photo credit: NASA/Kim Shiflett

On Aug. 13, engineers and technicians inside the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida successfully completed a series of acoustic tests to ensure the Orion spacecraft for NASA’s Artemis II mission can withstand the speed and vibration it will experience during launch and throughout the 10-day mission around the Moon, the first Artemis mission with astronauts.

During the testing, engineers surrounded the crew module with large stacks of speakers, and attached microphones, accelerometers, and other equipment to measure the effects of different acoustic levels. Engineers and technicians will now analyze the data collected during the tests.

Prior to testing, the four Artemis II astronauts visited the high bay and viewed their ride to the Moon. With this test complete, technicians at Kennedy are on track to integrate Orion’s crew and service modules this fall.

Artemis II Crew Visits Naval Base San Diego for Recovery Training

Artemis II astronauts inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego.
From left (front to back), NASA astronauts Victor Glover, Christina Hammock Koch, and Reid Wiseman, along with Canadian Space Agency astronaut Jeremy Hansen, pose inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego on July 19, 2023. VADR is a replica of the Orion crew module that will carry the astronauts around the Moon on Artemis II. Photo credit: U.S. Navy/Mass Communication Specialist 2nd Class Joshua Samoluk

The Artemis II crew – NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space Agency astronaut Jeremy Hansen – visited Naval Base San Diego on July 19 ahead of the first Artemis II recovery test in the Pacific Ocean, Underway Recovery Test-10. The test will build on the success of Artemis I recovery and ensure NASA and the Department of Defense personnel can safely recover astronauts and their Orion spacecraft after their trip around the Moon on the first crewed Artemis mission.

The crew met with recovery team members from NASA’s Exploration Ground Systems Program and the Department of Defense to learn more about the recovery process for their mission, which includes being extracted from the spacecraft after splashing down in the Pacific Ocean and being lifted via helicopter to the recovery ship where they will undergo routine medical checks before returning to shore.

The visit included a walkdown of the ground equipment and facilities the team uses to practice recovery procedures along with a walkthrough of the recovery ship. The crew will participate in full recovery testing at sea next year.

Orion Heat Shield Installed for NASA’s Artemis II Mission

The heat shield for the Artemis II Orion spacecraft
Installation of the heat shield for the Artemis II Orion spacecraft was recently completed at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Cory Huston

On June 25, 2023, teams completed installation of the heat shield for the Artemis II Orion spacecraft inside the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.

The 16.5-foot-wide heat shield is one of the most important systems on the Orion spacecraft ensuring a safe return of the astronauts on board. As the spacecraft returns to Earth following its mission around the Moon, it will be traveling at speeds of about 25,000 mph and experience outside temperatures of nearly 5,000 degrees Fahrenheit. Inside the spacecraft, however, astronauts will experience a much more comfortable temperature in the mid-70s thanks to Orion’s thermal protection system.

Up next, the spacecraft will be outfitted with some of its external panels ahead of acoustic testing later this summer. These tests will validate the crew module can withstand the vibrations it will experience throughout the Artemis II mission, during launch, flight, and landing.

Once acoustic testing is complete, technicians will attach the crew module to Orion’s service module, marking a major milestone for the Artemis II mission, the first mission with astronauts under Artemis that will test and check out all of Orion’s systems needed for future crewed missions.

NASA to Stand Down on Artemis I Launch Attempts in Early September, Reviewing Options

NASA’s Space Launch System rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B at NASA’s Kennedy Space Center in Florida.
NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B Sept. 2, 2022, at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I flight test is the first integrated test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Photo credit: NASA/Joel Kowsky

After standing down on today’s Artemis I launch attempt when engineers could not overcome a hydrogen leak in a quick disconnect, an interface between the liquid hydrogen fuel feed line and the Space Launch System (SLS) rocket, mission managers met and decided they will forego additional launch attempts in early September.

Over the next several days, teams will establish access to the area of the leak at Launch Pad 39B, and in parallel conduct a schedule assessment to provide additional data that will inform a decision on whether to perform work to replace a seal either at the pad, where it can be tested under cryogenic conditions, or inside the Vehicle Assembly Building.

To meet the requirement by the Eastern Range for the certification on the flight termination system, currently set at 25 days, NASA will need to roll the rocket and spacecraft back to the VAB before the next launch attempt to reset the system’s batteries. The flight termination system is required on all rockets to protect public safety.

During today’s launch attempt, engineers saw a leak in a cavity between the ground side and rocket side plates surrounding an 8-inch line used to fill and drain liquid hydrogen from the SLS rocket. Three attempts at reseating the seal were unsuccessful. While in an early phase of hydrogen loading operations called chilldown, when launch controllers cool down the lines and propulsion system prior to flowing super cold liquid hydrogen into the rocket’s tank at minus 423 degrees F, an inadvertent command was sent that temporarily raised the pressure in the system. While the rocket remained safe and it is too early to tell whether the bump in pressurization contributed to the cause of the leaky seal, engineers are examining the issue.

Because of the complex orbital mechanics involved in launching to the Moon, NASA would have had to launch Artemis I by Tuesday, Sept. 6 as part of the current launch period. View a list of launch windows here.

Artemis I Launch Update: Mission Management Team Gives “Go” for Sept. 3

A sunrise view of NASA’s Space Launch System and Orion spacecraft for Artemis I on the pad at Launch Complex 39B at NASA’s Kennedy Space Center in Florida on Aug. 22, 2022.
A sunrise view of NASA’s Space Launch System and Orion spacecraft for Artemis I on the pad at Launch Complex 39B at NASA’s Kennedy Space Center in Florida on Aug. 22, 2022. Photo credit: NASA/Ben Smegelsky

The Artemis I mission management team met this afternoon to review the status of the operations and have given a “go” for a Sept. 3 launch attempt of the Space Launch System rocket and Orion spacecraft. Since the previous launch attempt on Monday, Aug. 29, teams have updated procedures, practiced operations and refined timelines.

Over the last day, teams worked to fix a leak on the tail service mast umbilical by replacing a flex-hose and a loose pressure sensor line, as the likely the source of the leak. Teams also retorqued, or tightened, the bolts surrounding that enclosure to ensure a tight seal when introducing the super-cooled propellants through those lines. While there was no leak detected at ambient temperatures, teams will continue to monitor during tanking operations.

Teams will adjust the procedures to chill down the engines, also called the kick start bleed test, about 30 to 45 minutes earlier in the countdown during the liquid hydrogen fast fill phase for the core stage. This will to allow for additional time to cool the engines to appropriate temperatures for launch.

Meteorologists with the U.S. Space Force Space Launch Delta 45 predict 60% favorable weather conditions, improving throughout the window for Saturday.

Tune in to NASA Television, the NASA app, or the agency’s website at 9 a.m. for a prelaunch media briefing. Participants include:

  • Jeremy Parsons, Exploration Ground Systems, deputy program manager, NASA Kennedy
  • Melody Lovin, weather officer, Space Launch Delta 45

On Saturday, live coverage of tanking operations with commentary on NASA TV will begin at 5:45 a.m. EDT. Full launch coverage in English will begin at 12:15 p.m. and NASA en espanol broadcast coverage will begin at 1 p.m. EDT. Click here for the latest information on launch briefings and events.  

Final Certification Run for Orion Recovery

A test version of the Orion spacecraft is loaded into the well deck of a U.S. Navy ship.
A test version of NASA’s Orion spacecraft is loaded into the well deck of a U.S. Navy ship in preparation for the ninth in a series of tests to verify and validate procedures and hardware that will be used to recover the spacecraft after it splashes down in the Pacific Ocean following the agency’s Artemis I mission. The first in an increasingly complex series of missions, Artemis I will test the Space Launch System rocket and Orion as an integrated system prior to crewed flights to the Moon. Photo credit: NASA/Pete Reutt

NASA and the U.S. Navy are preparing to head out to sea for the ninth in a series of tests to verify and validate procedures and hardware that will be used to recover the Orion spacecraft after it splashes down in the Pacific Ocean following deep space exploration missions.

NASA’s Landing and Recovery team, managed by Exploration Ground Systems, is heading from the agency’s Kennedy Space Center in Florida to Naval Base San Diego in California where they will have their final certification run for the Artemis I mission.

During the weeklong test, the joint team will conduct simulations that will exercise all the operational procedures, including nighttime, to support certification of team members for the Artemis I mission. The team will practice recovering a test version of an Orion capsule and bringing it into the well deck of a Navy ship, ensuring all personnel are properly trained before the real Orion splashes down.

Orion is the exploration spacecraft designed to carry astronauts to the Moon and destinations not yet explored by humans. It is slated to launch atop NASA’s Space Launch System rocket on its first deep space mission to pave the way for future flights with astronauts.