NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.
Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.
Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations.
In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
On July 16, 1969, the Apollo 11 mission lifted off on a Saturn V rocket from NASA’s Kennedy Space Centerin Florida. Crowds gathered with their eyes craned toward the sky, asNASA set out to make history with their next giant leap – landing astronauts on the Moon.
One historical member watching the launch, JoAnn Morgan, instrumentation controller for Apollo 11, and the only female in the firing room inside NASA’s Launch Control Center.
“I look at that picture of the firing room where I’m the only woman. And I hope all the pictures now that show people working on the missions to the Moon and onto Mars, in rooms like mission Control or launch Control or wherever — that there will always be several women. I hope that photos like the ones I’m in don’t exist anymore,” said Morgan.
NASA is hard at work 55 years later returning astronauts to the Moon with the Artemiscampaign which will land the first woman, first person of color, and its first international partner astronaut on the Moon – and establish the first long-term presence on the Moon. With these new missions supporting lunar exploration, Morgan’s hope for several women in the STEM field is coming true.
Today, in that very same room where Morgan once sat as the only female engineer, dozens of women sit on console preparing to launch the mighty SLS (Space Launch System) rocket and Orion spacecraft back to the Moon for Artemis II. The room itself is not only full of a diverse group of engineers, but leading the team to liftoff is NASA’s first female Launch Director, Charlie Blackwell Thompson.
This Women’s History Month, female leaders within the space industry met at NASA Kennedy to reflect on what mentorship means to them.
“JoAnn, you did show us, whether you knew it at the time or not, that we belong in this room,” Blackwell-Thompson said. “Because of the work you did all those years ago, you made it possible for me.”
The leaders meeting shared their thoughts on ways women can lead in the space industry.
Sharing is caring Sharing is the basis of mentorship. Share your experiences either as a guiding tool or a lesson learned.
An attitude of gratitude We grow stronger when we grow together. Shine the light their way and give them a moment in the sun. A sense of gratitude and encouragement amongst others can make a huge difference in the effectiveness of the team.
Stepping up to the plate How can you be a person of action?
Growing pains are good Just like physical growing pains, experiencing uncomfortableness in your career can be a sign of growth. Outperformance will feel uncomfortable. Trying something new will feel uncomfortable.Get comfortable being uncomfortable.
Define how others view you Deliver on your word. Do the right thing when nobody is looking. Be the person you would want on your team.
Leadership is not defined by your title Rise to the challenge within your everyday activities. Inspire those around you and offer a helping hand when it is needed. You can embody all of the characteristics of someone who leads long before you have the words manager, supervisor, or director in your official title.
Identify your board of advisors Just like any company trying to grow, your career deserves a board of advisors to grow. Create a space where you can talk your career navigation. Your board of advisors can change over periods of time and take shape in formal or informal relationships.
Bet on yourself At every stage in your career, you hold power. Ask for a new challenge, the power to say no, and the power to ask for help.
Surround yourself with the best of the best Teams can only be the best of the best when they include diverse thought. Be mindful of who you can collaborate with that will bring ideas unique from yours.
Make your mistakes matter What did you learn? What can you teach others? How will this mistake lead you in the future?
The work NASA does today, wouldn’t be possible without the mentors who have blazed the trail before. NASA Kennedy Center DirectorJanet Petro shares the importance of this teamwork, reminding us, “We are not doing any of this work for just ourselves, it is for the bigger goals of the agency and humanity.”
Final stacking operations for NASA’s mega-Moon rocket are underway inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as the Orion spacecraft is lifted onto the Space Launch System (SLS) rocket for the Artemis I mission. Engineers and technicians with Exploration Ground Systems (EGS) and Jacobs attached the spacecraft to one of the five overhead cranes inside the building and began lifting it a little after midnight EDT.
Next, teams will slowly lower it onto the fully stacked SLS rocket and connect it to the Orion Stage Adapter. This will require the EGS team to align the spacecraft perfectly with the adapter before gently attaching the two together. This operation will take several hours to make sure Orion is securely in place.
NASA will provide an update once stacking for the Artemis I mission is complete.
Teams at NASA’s Kennedy Space Center in Florida are putting the final touches on the Orionspacecraft for the Artemis I mission by connecting the ogive fairings for the launch abort system (LAS) assembly. Pronounced oh-jive, the ogive fairings consist of four protective panels, and their installation will complete the LAS assembly.
Technicians and engineers from the center’s Exploration Ground Systems and contractor Jacobs recently finished attaching the launch abort tower to the top of the Orion crew module. They then began lifting and mating the lightweight fairings, which will shield the crew module from the severe vibrations and sounds it will experience during launch. One of the fairing panels has a hatch to allow access to the crew module before launch.
During Artemis missions, the 44-foot-tall LAS will detach from the spacecraft when it is no longer needed, shortly after launching on the Space Launch System (SLS) rocket, to lighten the journey to the Moon. Although the abort motors will not be active on the uncrewed Artemis I flight test, the system is intended to protect astronauts on future missions if a problem arises during launch or ascent by pulling the spacecraft away from a failing rocket.
Once LAS installation is complete, the spacecraft will leave the Launch Abort System Facility and continue on its path to the pad, making its way to the spaceport’s Vehicle Assembly Building to be integrated with the SLS rocket ahead of the launch.
The core stage of the Space Launch System (SLS) rocket for NASA’s Artemis I mission has been placed on the mobile launcher in between the twin solid rocket boosters inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. The boosters attach at the engine and intertank sections of the core stage. Serving as the backbone of the rocket, the core stage supports the weight of the payload, upper stage, and crew vehicle, as well as carrying the thrust of its four engines and two five-segment solid rocket boosters.
After the core stage arrived on April 27, engineers with Exploration Ground Systems and contractor Jacobs brought the core stage into the VAB for processing work and then lifted it into place with one of the five overhead cranes in the facility.
Once the core stage is stacked alongside the boosters, the launch vehicle stage adapter, which connects the core stage to the interim cryogenic propulsion stage (ICPS), will be stacked atop the core stage and quickly followed by the ICPS.
Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and first person of color on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.
Teams with NASA’s Kennedy Space Center Exploration Ground Systems and primary contractor, Jacobs, are fueling the Orion service module ahead of the Artemis I mission. The spacecraft currently resides in Kennedy’s Multi-Payload Processing Facility alongside the Interim Cryogenic Propulsion System (ICPS), the rocket’s upper stage that will send Orion to the Moon. After servicing, these elements will be integrated with the flight components of the Space Launch System, which are being assembled in the Vehicle Assembly Building.
Technicians began loading Orion’s service module with oxidizer, which will power the Orbital Maneuvering System main engine and auxiliary thrusters on the European-built service module ahead of propellant loading. These auxiliary thrusters stabilize and control the rotation of the spacecraft after it separates from the ICPS. Once the service module is loaded, teams will fuel the crew module to support thermal control of the internal avionics and the reaction control system. These 12 thrusters steady the crew module and control its rotation after separation from the service module.
Once Orion servicing is complete, teams will fill the ICPS. This liquid oxygen/liquid hydrogen-based system will push the spacecraft beyond the Moon for the test flight under the agency’s Artemis program. In several weeks, when fueling is complete, Orion will move to the center’s Launch Abort System Facility to integrate its launch abort system, and the ICPS will move to the Vehicle Assembly Building to be stacked atop the mobile launcher.
The Space Launch System (SLS) rocket’s interim cryogenic propulsion stage (ICPS) moved into the Multi-Payload Processing Facility February 18, 2021, at NASA’s Kennedy Space Center in Florida alongside one of its flight partners for the Artemis I mission, the Orion spacecraft. Both pieces of hardware will undergo fueling and servicing in the facility ahead of launch by teams from NASA’s Exploration Ground Systems and their primary contractor, Jacobs Technology. The rocket stage and Orion will remain close during their journey to space.
Built by United Launch Alliance and Boeing, the ICPS will be positioned above the core stage and will provide the power needed to give Orion the big push it needs to break out of Earth orbit on a precise trajectory toward the Moon during Artemis I.
This is the first time since the shuttle program that two pieces of flight hardware have been processed inside this facility at the same time. Once final checkouts are complete, the ICPS and Orion will part ways on the ground and be reunited in the Vehicle Assembly Building for integration onto the SLS rocket.
Artemis I will be an integrated flight test of the SLS rocket and Orion spacecraft ahead of the crewed flights to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the lunar surface and establish a sustainable presence at the Moon to prepare for human missions to Mars.
NASA’s Kennedy Space Center, a premier multi-user spaceport, uses research and innovation to support the future of space exploration. Kennedy’s annual Best of KSC Software competition is an employee-driven contest that fosters creativity and enables new discoveries to improve the quality of life on Earth and the exploration of our solar system and beyond.
The 2020 winner of Best of KSC Software was SpecsIntact 5. The development team, made up of NASA employees and contractors from across the center, earned this distinction by redesigning the SpecsIntact software. This automated specification management system is used in construction projects worldwide. The upgraded system reduces the time and cost required to produce facility specifications with an easy and intuitive interface that assists with quality control.
The team at Kennedy Space Center manages the SpecsIntact system, which also is used by many federal and state agencies, including the U.S. military. At Kennedy, NASA used previous versions of the software for the design, construction, and upgrades of several facilities, including modification of the spaceport’s headquarters building and upgrades to the main flame deflector in the flame trench at Launch Pad 39B.
The software was also instrumental to the renovation of High Bay 3 inside the Vehicle Assembly Building in preparation for NASA’s first integrated launch of the Space Launch System rocket and Orion spacecraft as part of the agency’s Artemis program.
The SpecsIntact system has evolved significantly since first conceived at NASA in 1965 to support applications across both the government and private sector. NASA’s Technology Transfer Program ensures that innovations developed for exploration and discovery are broadly available to the public, maximizing the benefit to the nation. The program enables U.S. industry efforts to find new applications for NASA technologies on Earth and for human space exploration, including deep space missions to the Moon and Mars.
The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.
Before the most powerful rocket in existence can lift off for lunar missions, it must first make the 4.2-mile trek from the Vehicle Assembly Building (VAB) to the launch pad at NASA’s Kennedy Space Center in Florida.
For the Artemis I mission, the path from the VAB to Launch Complex 39B must be able to support the behemoth Crawler Transporter-2 — as well as the massive weight of the Space Launch System (SLS) rocket, the Orion capsule, and the mobile launcher. Teams at Kennedy are working to ensure the crawlerway is strong enough to withstand the weight and provide stability for the Artemis I mission and then some.
“Conditioning the crawlerway is important to prevent a phenomenon we call liquefaction, in which the crawler transporter, the mobile launcher, and the load on it causes the crawlerway to vibrate and shake the soil,” said Robert Schroeder, design manager of the crawlerway conditioning project and engineer at Kennedy. “Essentially, the soil itself will behave like a liquid instead of a solid, which could cause the crawler to tip to one side or the other.”
The crawlerway is currently required to support 25.5 million pounds for the Artemis I mission. However, as essential payloads will be added on future missions, the teams at Kennedy decided to test additional weight so they would be “ahead of the ballgame,” Schroeder said.
Work to prepare the crawlerway began Nov. 23. Over the next few months, technicians will lift several concrete blocks, each weighing over 40,000 pounds, onto the mobile launcher platform used for the space shuttle and Crawler Transporter-2. They will then drive the loaded transporter up and down the path between the VAB and launch pad, with each pass increasingly compacting the soil. By the time the project ends, the crawlerway will have supported more than 26 million pounds.
Artemis I will be the first in a series of increasingly complex missions to the Moon. Under the Artemis program, NASA aims to land the first woman and the next man on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.