NASA, Commercial Partners Progress to Human Spaceflight Home Stretch

NASA and commercial industry partners Boeing and SpaceX are making significant advances in preparing to launch our astronauts from U.S. soil for the first time since the space shuttle’s retirement in 2011.  Let’s take a look at some of the highlights from 2018 to this point.

On the International Space Station, the crew aboard continues preparations for new visiting spacecraft.  In June, astronauts installed a high-definition camera to assist with the docking of Boeing and SpaceX’s capsules as they approach for docking.

Meanwhile, on the ground, significant progress continues to take place for Boeing and SpaceX in final preparations for flight testing.  Both companies have several spacecraft and rockets in various stages of production. Teams have practiced interfacing with the spacecraft, and rehearsed launch countdown and landing procedures, as well as emergency scenarios both at the launch pad and in flight.

With the upcoming flights to begin from Boeing and SpaceX, final rounds of crew and mission support practice, qualification tests, and simulations of multiple mission scenarios, serve to bring us on the doorstep of America’s next great chapter in space flight.

Learn more about the exciting work that both companies have done thus far in 2018, at https://go.nasa.gov/2LH1K17

SpaceX Completes Parachute System Test

SpaceX Parachute TestIn case you missed it, SpaceX recently completed its 16th parachute system test for the company’s Crew Dragon spacecraft, which will carry astronauts to and from the International Space Station as part of NASA’s Commercial Crew Program.

SpaceX conducted the test at Naval Air Facility El Centro in Southern California, deploying parachutes to slow the spacecraft for a safe landing in the desert. Crew Dragon is designed for water landings in a nominal scenario, but the test demonstrated the system’s ability to land the spacecraft safely in the unlikely event of a low altitude abort.

Spacewalkers Complete HD Camera Installation

Expedition 56 Commander Drew Feustel and Flight Engineer Ricky Arnold of NASA completed the sixth spacewalk at the International Space Station this year at 2:55 p.m. EDT, lasting 6 hours, 49 minutes. The two astronauts installed new high-definition cameras that will provide enhanced views during the final phase of approach and docking of the SpaceX Crew Dragon and Boeing Starliner commercial crew spacecraft that will soon begin launching from American soil.

They also swapped a camera assembly on the starboard truss of the station, closed an aperture door on an external environmental imaging experiment outside the Japanese Kibo module, and completed two additional tasks to relocate a grapple bar to aid future spacewalkers and secured some gear associated with a spare cooling unit housed on the station’s truss.

Commercial Crew Astronauts Survey Launch Pad Progress

Commercial Crew Program astronauts visit Launch Complex 39A at Kennedy Space Center in Florida.

Commercial Crew Program astronauts (left to right) Suni Williams, Eric Boe, Bob Behnken and Doug Hurley visited Launch Complex 39A at NASA’s Kennedy Space Center (KSC) March 27. The astronauts toured the pad for an up-close look at preparations in work for the SpaceX Crew Dragon flight tests. The tower modifications, including the recent removal of the rotating service structure, are proof of progress in outfitting the pad for crew once again. Future integration of the crew access arm will allow for safe crew entry and exit from the spacecraft for launch and in the unlikely event of a pad abort scenario.

Commercial Crew Program astronauts outside SpaceX’s processing hangar.

During their visit to KSC, the astronauts also stopped outside SpaceX’s processing hangar, adjacent to the launch pad and talked directly with SpaceX employees about their excitement as the program builds momentum. SpaceX and Boeing are working toward returning human space flight launches to the U.S. with flight tests targeted later this year.

Commercial Crew Program Simulates Astronaut Rescue Missions

A C-17 Globemaster aircraft from the Alaska Air National Guard’s 249th Airlift Squadron flies overhead as pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon complete an astronaut rescue training exercise inside a covered life raft on the Atlantic Ocean. The pararescue specialists, supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, conducted the exercise in April with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast. The specially designed 20-person life raft is equipped with enough food, water and medical supplies to sustain both rescuers and crew for up to three days, if necessary.

As NASA, Boeing and SpaceX prepare for commercial human spaceflight launches, they are training for a variety of contingencies, including emergency water landings. NASA’s Commercial Crew Program Landing and Recovery Team is leading a multi-agency operation to practice astronaut rescue missions.

Rescue and recovery involves meticulous planning and close coordination between NASA, the Department of Defense (DOD), and company recovery teams for Starliner and Crew Dragon. These are the spacecraft of Boeing and SpaceX that will fly astronauts to and from the International Space Station from U.S. soil. In the event of a variety of contingency landings, an elite team of pararescue specialists is prepared to rescue the crew anywhere in the world.

For more details, visit: https://www.nasa.gov/feature/rescue-operations-take-shape-for-commercial-crew-program-astronauts

Young Engineer Shapes Commercial Human Spaceflight Policy

Kathleen O’Brady is a certification systems engineer at NASA’s Kennedy Space Center in Florida.

Kathleen O’Brady’s five-year-old son can name all of the planets in our solar system and even some nearby stars. Perhaps the brightest star he knows though is his mom. She is helping shape policy in the new era of commercial human spaceflight.

O’Brady plays a key role in NASA’s Commercial Crew Program (CCP), which has partnered with Boeing and SpaceX to develop spacecraft to fly NASA astronauts to the International Space Station, and return them safely home. NASA is in the process of certifying two new crew transportation systems—Boeing’s Starliner and SpaceX’s Crew Dragon—at the same time. As a certification systems engineer in the program’s Systems Engineering and Integration Office at NASA’s Kennedy Space Center in Florida, O’Brady was responsible for defining an integrated plan for certification which is being executed by both providers.

“I honestly loved it,” O’Brady said. “It’s like putting a puzzle together. Half the problem is trying to make sure you understand what all the pieces are, and then you start slowly integrating those pieces.”

Boeing and SpaceX are targeting test flights with crew on board for late this year. “We all have to do the job right,” O’Brady said. “We have a duty to return our astronauts to flight. We’re going to use these private companies and they’re going to do a fantastic job.”

Astronaut Perspective

After completion of uncrewed and crew test flights of Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon, NASA will review the data to ensure the vehicles meet the agency safety and performance requirements, as part of final certification efforts.

With test flights scheduled later this year, Boeing and SpaceX are working closely with the astronaut team to ensure crew safety and serviceability in their respective capsules.

Here’s more about what the commercial crew astronaut test pilots are looking forward to in the upcoming year:

 

Bob Behnken

Behnken, a NASA astronaut since 2000, flew on space shuttle missions STS-123 and STS-130 accumulating more than 29 days in space.

Eric Boe

Boe, a NASA astronaut since 2000, flew on STS-126 and STS-133 and has logged more than 6,000 hours of flight training and 28 days in space. He is most excited about seeing the hardware.

Doug Hurley

Hurley, a NASA astronaut since 2000, flew on STS-127 and the final Shuttle flight, STS-135, totaling more than 28 days in space. Hurley is most excited about seeing all the spacecraft hardware coming together.

Suni Williams

Williams, a NASA astronaut since 1998, flew to the space station on STS-116 as a member of Expeditions 14-15, returning on STS-117. Her second long-duration mission began aboard a Russian Soyuz for Expeditions 32-33. Cumulatively, she is approaching a year in space with more than 322 days in space.

Beyond the flight tests and launches, Williams is excited about the manufacturing underway.

“One of the coolest things is there’s hardware undergoing testing. This is a pretty exciting time. It’s like all the pieces and parts of the puzzle are coming together.”

NASA’s Continued Focus on Returning U.S. Human Spaceflight Launches

International Space StationNASA’s Commercial Crew Program and private industry partners, Boeing and SpaceX, continue to develop the systems that will return human spaceflight to the United States. Both commercial partners are undertaking considerable amounts of testing in 2018 to prove space system designs and the ability to meet NASA’s mission and safety requirement for regular crew flights to the International Space Station.

“The work Boeing and SpaceX are doing is incredible. They are manufacturing spaceflight hardware, performing really complicated testing and proving their systems to make sure we get it right.” said Kathy Lueders, program manager NASA Commercial Crew Program. “Getting it right is the most important thing.”

Both Boeing and SpaceX plan to fly test missions without crew to the space station prior to test flights with a crew onboard this year. After each company’s test flights, NASA will work to certify the systems and begin post-certification crew rotation missions. The current flight schedules for commercial crew systems provide about six months of margin to begin regular, post-certification crew rotation missions to the International Space Station before contracted flights on Soyuz flights end in fall 2019.

As part of the agency’s normal contingency planning, NASA is exploring multiple scenarios as the agency protects for potential schedule adjustments to ensure continued U.S. access to the space station. One option under consideration would extend the duration of upcoming flight tests with crew targeted for the end of 2018 on the Boeing CST-100 Starliner and SpaceX Crew Dragon. The flights could be extended longer than the current two weeks planned for test flights, and likely less than a six-month full-duration mission. The agency also is assessing whether there is a need to add another NASA crew member on the flight tests.

This would not the first time NASA has expanded the scope of test flights. NASA had SpaceX carry cargo on its commercial demonstration flight to the International Space Station in 2012, which was not part of the original agreement. This decision allowed NASA to ensure the crew aboard the space station had the equipment, food and other supplies needed on the station after the end of the agency’s Space Shuttle Program.

As with all contingency plans, the options will receive a thorough review by the agency, including safety and engineering reviews. NASA will make a decision on these options within the next few months to begin training crews.

Mixed Reality Technology Helps NASA Astronauts Prepare for Starliner Returns from the Space Station

NASA’s Commercial Crew Program astronauts, wearing spacesuits and augmented reality headsets, rehearse returning to Earth from the International Space Station during recent testing at Boeing’s Extended Reality Laboratory in Philadelphia. The astronauts are seated upside down so they can practice releasing their seat harness and moving to the side hatch of the Starliner without assistance. The astronauts wearing the mixed reality gear see a digital version of the interior of the Starliner as it would look in the real-life scenario while interacting with the environment around them. Photo credit: Boeing

NASA’s Commercial Crew Program astronauts training to fly test missions to and from the International Space Station are practicing returning to Earth from the microgravity laboratory. Recent testing at Boeing’s Extended Reality Laboratory in Philadelphia combines mixed reality simulations with astronauts wearing spacesuits and augmented reality headsets, and secured in mock-up Starliner seats – the spacecraft being developed by Boeing. The testing allows astronauts to perform an exit from their seats in uncommon landing conditions. The astronauts are seated upside down so they can practice releasing their seat harness and moving to the side hatch of the Starliner without assistance. The astronauts wearing the mixed reality gear see a digital version of the interior of the Starliner as it would look in the real-life scenario while interacting with the environment around them.

In total, 30 practice runs were completed, some to familiarize the crew with the exit procedures and some additional timed runs. The Starliner is designed to land in the Western United States under parachutes and touch down on airbags located on the bottom of the spacecraft.  In the event that the capsule does not land upright, testing in extreme conditions helps prepare astronauts for any situation, including an inverted position.

Boeing already has completed a series of parachute drop tests and full-scale landing qualification tests to understand a wide range of spacecraft conditions when returning to earth. The company also has used test dummies in stand-alone seat tests and incorporated the dummies into landing drop tests to understand impacts to crew members.

Both Boeing and SpaceX have been working with the astronauts training to fly the test missions to the International Space Station. The two commercial providers have been developing unique systems to meet the goal of returning crew launches to the United States. Boeing’s Starliner will launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. SpaceX is developing the Crew Dragon, or Dragon 2, spacecraft to launch on the company’s Falcon 9 rocket from Launch Complex 39A. Both companies will begin their journeys from Florida’s Space Coast. Boeing plans to return on land, while SpaceX will splash down in the Atlantic Ocean. Recent SpaceX testing for return to Earth has included rescue and recovery training in the Atlantic with spacesuit-clad astronauts and personnel who will assist upon return to Earth.

NASA’s Commercial Crew Program Target Test Flight Dates

The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation. NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station. Two of those demonstrations are uncrewed flight tests, known as Orbital Flight Test for Boeing, and Demonstration Mission 1 for SpaceX. After the uncrewed flight tests, both companies will execute a flight test with crew prior to being certified by NASA for crew rotation missions. The following schedule reflects the most recent publicly releasable dates for both providers.

Targeted Test Flight Dates:
Boeing Orbital Flight Test (uncrewed): August 2018
Boeing Crew Flight Test (crewed): November 2018
SpaceX Demonstration Mission 1 (uncrewed): August 2018
SpaceX Demonstration Mission 2 (crewed): December 2018

*NASA, Boeing and SpaceX provided an update on Aug. 1, 2018. For the details on the flight tests and the latest schedule, visit https://go.nasa.gov/2OHwM7M.