ICYMI: President Touts Advances in Commercial Crew Spacecraft

Obama-SerenaCCP-stitchIn case you missed it, President Barack Obama talked Thursday, Oct. 13, with the two companies developing the next generation of American spacecraft designed to take NASA astronauts into orbit and to the International Space Station.

Touring exhibits by Boeing and SpaceX during the Frontiers Conference at Carnegie Mellon University and University of Pittsburgh in Pittsburgh, Obama discussed the immediate future of space exploration and touted the advances made in the public-private partnerships between the companies and NASA’s Commercial Crew Program. Because the new spacecraft will enable a larger space station crew and more research time in space, they are seen as critical avenues to help scientists and astronauts explore the best methods to send crews into deep space and eventually to Mars.

The goal is “to lead humanity farther out into the final frontier of space,” the president said. “Not just to visit, but to stay.”

Obama even took the controls of a simulator designed to mimic the flight of Boeing’s CST-100 Starliner spacecraft. He conducted a Starliner docking maneuver similar to the one astronauts will actually fly in the future during crew rotation missions to the orbiting laboratory.

“Your ride is here,” Obama said after completing the exercise.

“I’m not sure who had more fun today – the president or me,” said NASA astronaut Serena Aunon-Chancellor, who helped demonstrate how the simulator worked. “He was a natural docking the Starliner to the space station!”

The president also inspected SpaceX’s Crew Dragon design up-close and talked at length with Aunon-Chancellor and a company official.

“You almost want to get in and take off, don’t you?” the president said.

“While visiting Dragon, we discussed the future of human spaceflight and how important it is to safely and reliably get our crew to the station in low-Earth orbit so NASA can focus on human exploration in deep space,” Aunon-Chancellor said. “We’re excited about the progress our partners are making and look forward to flying with them soon.” Photo credit: Michael Henninger/ Pittsburgh Post-Gazette

Starliner Propulsion Hardware Arrives, Testing Begins

hr-LAE_Test_01_10_10_16

Boeing and Aerojet Rocketdyne have begun a series of developmental hot-fires tests with two launch abort engines similar to the ones that will be part of Boeing’s Starliner service module. The engines, designed to maximize thrust build-up, while minimizing overshoot during start up, will be fired between half a second and 3 seconds each during the test campaign. If the Starliner’s four launch abort engines were used during an abort scenario, they would fire between 3 and 5.5 seconds, with enough thrust to get the spacecraft and its crew away from the rocket, before splashing down in the ocean under parachutes.

Recently, Aerojet Rocketdyne also completed delivery of the first set of hardware for Starliner’s service module propulsion system.

The Starliner is under development in collaboration with NASA’s Commercial Crew Program for crew missions to the International Space Station.

Boeing Unveils New Home for Starliner Trainers

SuniinPTTroomsuniatboeingPTTevent

ControlBridgeAstronauts have new training equipment at NASA’s Johnson Space Center in Houston after Boeing installed its Crew Part-Task Trainers that simulate aspects of missions aboard the company’s CST-100 Starliner spacecraft. The spacecraft and training systems are in development and manufacturing in partnership between the company and NASA’s Commercial Crew Program in order to begin flying astronauts to the International Space Station from launch sites in Florida. 

Boeing officials, including former space shuttle commander Chris Ferguson, offered news media and others a tour of the facility in Houston where astronauts will rehearse for Starliner missions. Astronauts Suni Williams and Bob Behnken, two of four selected to train to fly Commercial Crew Program flight tests with Boeing and SpaceX, took the controls of the simulator to demonstrate the trainers as engineers looked on from separate workstations. During normal training operations, the engineers will oversee the situations as astronauts perform simulated missions. 

NASA’s astronauts have relied on simulators from the beginning of human spaceflight to practice the critical steps of a mission before they have to perform the real thing. As simulators increased in capability, the training became so life-like that astronauts routinely reported simulator flights being more stressful than actual missions. For more: http://go.nasa.gov/2d7dmv0

 

Every Day Closer to a New Way to Orbit

A Delta II rocket launches with the NPOESS Preparatory Project (NPP) spacecraft payload from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Friday, Oct. 28, 2011. NPP is the first NASA satellite mission to address the challenge of acquiring a wide range of land, ocean, and atmospheric measurements for Earth system science while simultaneously preparing to address operational requirements for weather forecasting. Photo Credit: (NASA/Bill Ingalls)

23364583500_ec6a3868d5_o

Wide Angle Photos of SLC-41 from VIF

Two years after selecting the next generation of American spacecraft and rockets that will launch astronauts to the International Space Station, engineers and spaceflight specialists across NASA’s Commercial Crew Program, Boeing and SpaceX are putting in place the elements required for successful missions. Here are eight things to know about Commercial Crew:

1. The Goal – The goal of NASA’s Commercial Crew Program is to return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety requirements. To accomplish this goal, we are taking a unique approach by asking private companies, Boeing and SpaceX, to develop human spaceflight systems to take over the task of flying astronauts to station.

Shots of Pad 39A for Commerical Crew Program (CCP).

2. Multi-User Spaceport – Boeing and SpaceX, like other commercial aerospace companies, are capitalizing on the unique experience and infrastructure along the Space Coast at our Kennedy Space Center and Cape Canaveral Air Force Station. Kennedy has transitioned from a government-only launch complex to a premier multi-user spaceport. In the coming years, the number of launch providers along the Space Coast is expected to more than double.

3. Innovation – Our expertise has been joined with industry innovations to produce the most advanced spacecraft to ever carry humans into orbit. Each company is developing its own unique systems to meet our safety requirements, and once certified by us, the providers will begin taking astronauts to the space station.

tumblr_inline_odkp54dghC1tzhl5u_5004. Research – With two new spacecraft that can carry up to four astronauts to the International Space Station with each of our missions, the number of resident crew will increase and will double the amount of time dedicated to research. That means new technologies and advances to improve life here on Earth and a better understanding of what it will take for long duration, deep space missions, including to Mars.

5. Crew Training – Astronauts Bob Behnken, Eric Boe, Doug Hurley and Suni Williams have been selected to train to fly flight tests aboard the Boeing CST-100 Starliner and SpaceX Crew Dragon. The veteran crew have sent time in both spacecraft evaluating and training on their systems. Both providers are responsible for developing every aspect of the mission, from the spacesuits and training, to the rocket and spacecraft.

6. Launch Abort System – Boeing and SpaceX will equip their spacecraft with launch abort systems to get astronauts out of danger … FAST!

7. Expedited Delivery – Time-sensitive, critical experiments performed in orbit will be returned to Earth aboard commercial crew spacecraft, and returned to the scientists on Earth in hours, instead of days – before vital results are lost. That means better life and physical science research results, like VEGGIE, heart cells, and protein crystals.

8. Lifeboat – The spacecraft will offer safe and versatile lifeboats for the crew of the space station, whether an emergency on-orbit causes the crew to shelter for a brief time in safety, or leave the orbiting laboratory altogether. Learn more: https://www.nasa.gov/content/new-craft-will-be-americas-first-space-lifeboat-in-40-years/

Spacewalk Begins With Astronauts Focusing on IDA

IDA-1onstationschematicAstronauts Jeff Williams and Kate Rubins floated outside the Quest airlock on the International Space Station at 8:04 a.m. EDT to begin a 6 1/2-hour EVA. The spacewalkers will connect the International Docking Adapter to the station so that visiting vehicles including those in development for NASA’s Commercial Crew Program can connect to the station in the near future. The IDA itself, built by Boeing, has been pulled from the trunk of a SpaceX Dragon cargo resupply spacecraft and positioned next to the port it will be connected to. The video below shows the IDA’s extraction, and you can watch NASA TV’s spacewalk coverage this morning in the window to the right, on Web streaming or on NASA TV. The coverage will include conversations with spacewalk officers, astronauts and Commercial Crew Program officials.

Also, you can tweet questions to astronaut Doug Wheelock – @Astro_Wheels – throughout the morning. Just use .

Five Years After Shuttle, Missions Near for Commercial Crew

4X v1A new era of human spaceflight in America is approaching on the horizon five years after the space shuttle era ended with the touch down of Atlantis on the runway at Kennedy Space Center in Florida. Built from the best of NASA’s Commercial Crew Program’s expertise plus the innovation of top American aerospace companies, spacecraft and rockets designed and built using a new approach to development are taking shape inside factories across the nation. Intensive test programs are underway on Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon transportation systems, both built to take astronauts to the International Space Station from the United States. A lot has happened during the past five years, and the pace is picking up: http://go.nasa.gov/24QDPuA

Astronauts, Mission Control Simulate Commercial Crew Flight

Commerical Crew Program astronauts Bob Behnken and Eric Boe perfoming and on-console simulation of Boeing's CST-100 Starliner at Johnson Space Center (JSC)

Commerical Crew Program astronauts Bob Behnken and Eric Boe perfoming and on-console simulation of Boeing's CST-100 Starliner at Johnson Space Center (JSC)

Commerical Crew Program astronauts Bob Behnken and Eric Boe perfoming and on-console simulation of Boeing's CST-100 Starliner at Johnson Space Center (JSC)

Commercial Crew Program astronauts Bob Behnken and Eric Boe joined flight director Richard Jones and his NASA/Boeing flight control team in the first Mission Control Center, Houston, on-console simulation of Boeing’s CST-100 Starliner launch, climb to orbit and post-orbital insertion timeline.

The ascent simulation included a training team inserting problems remotely from a nearby building, which allowed the team to follow checklists and procedures to solve issues that could arise during a dynamic, real-flight situation.

Boeing has an agreement in place with NASA’s Johnson Space Center to provide flight control and facility expertise in managing missions of the Starliner and United Launch Alliance Atlas V rocket. Simulations covering all aspects of human space flight control have been conducted for every human space flight and prepare the astronauts and flight controllers for the real flights.

Behnken and Boe along with Doug Hurley and Suni Williams are integrated as a group with Boeing and SpaceX on its Dragon crew vehicle through the development phase and first test flights. Specific crew assignments have not yet been announced. Read more about the advances NASA’s Commercial Crew Program have made in 2016: http://go.nasa.gov/24QDPuA

Astronauts Provide Vital Feedback in Spacecraft Development

Twitter-astroshelpspacecraftv1NASA’s Commercial Crew Program astronauts work side-by-side with Boeing and SpaceX engineers to evaluate their systems and trainers as they each prepare to return launches to the International Space Station from American soil. They have performed fit checks in mockup spacecraft, assessed the spacecraft’s display panel and controls among numerous other systems: http://go.nasa.gov/1tuHinI

Watch Commercial Crew Progress

GOOD-screengrab

Spacecraft are under construction, launch infrastructure is being modified and systems testing of all sorts is underway as NASA’s Commercial Crew Program works closely with Boeing and SpaceX to advance the new generation of American spacecraft designed to carry astronauts to the International Space Station from the United States. Boeing and SpaceX are building flight-like CST-100 Starliners and Crew Dragons, respectively, for evaluations prior to their flight test campaigns. Watch the testing, qualification and hardware buildup completed so far in 2016 in the video below toward the program’s goal of developing safe, reliable, cost-effective crew transportation systems.

Astronaut Visits Starliner Component Makers in California

MeganmcarthurchrisfergcomputertechMeganMcarthur-solosuitVeteran astronaut Megan McArthur toured two of the companies building components for Boeing’s CST-100 Starliner spacecraft recently and met with some of the employees who are designing and making sensors and circuit boards the spacecraft and its crews will rely on to steer precisely to the International Space Station. She was joined by Chris Ferguson, a former space shuttle commander who is now Boeing’s director of Crew and Mission Operations for Commercial Crew. Boeing is one of two companies under contract with NASA’s Commercial Crew Program to develop spacecraft systems to take astronauts to the space station. The missions will enhance research by increasing the number of crew members aboard the orbiting laboratory.

McArthur, who flew as a mission specialist on STS-125 and captured the Hubble Space Telescope with the shuttle’s robotic arm, visited Advanced Scientific Concepts in Santa Barbara, California, on April 7 where she surveyed the 3D Flash Light Detection and Ranging sensors the company is making. The LIDAR gear will let Starliner crews see the station in all conditions in space during a mission. The next day, McArthur visited Qual-Pro Corp in Gardena, California, where engineers are making the circuit boards that will allow Starliner systems to communicate with each other.

“It’s never about the individual or just the crew members who are in space,” McArthur said. “It’s always about the team of folks who are getting us ready to fly, who are getting the hardware ready to fly and keeping us safe while we’re up there. It’s not something we can ever succeed at by ourselves.” Meganmcarthurchrisferguson