Starliner Test Article Joined to Complete First Hull

STAJoin-4STAjoin-3The first CST-100 Starliner hull stands in one piece inside Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center after engineers bolted together the upper and lower domes May 2 as completion nears of the Structural Test Article. It is the first spacecraft to come together inside the former shuttle hangar since shuttle Discovery was moved out of the facility following its retirement and move to the Smithsonian’s Udvar-Hazy Center near Washington, D.C., in 2012. You can watch Boeing’s video about the spacecraft’s manufacturing here.

Identical to the operational Starliners Boeing plans to build and fly in partnership with NASA’s Commercial Crew Program, the Structural Test Article is not meant to ever fly in space but rather to prove the manufacturing methods and overall ability of the spacecraft to handle the demands of spaceflight carrying astronauts to the International Space Station.

STAJoin2Boeing is one of two contractors chosen by NASA to take astronauts to the station using American vehicles launching from U.S. soil. Tests with and without crew members will take flight before operational missions begin. The end result for NASA will be a larger space station resident crew and a doubling of scientific research time aboard the orbiting laboratory as scientists try to decipher the challenges of deep space exploration and provide enhancements for everyone on Earth.

The Starliner structural test article will go through final outfitting before it is moved to Huntington Beach, California, where it will be subjected to loads and separation testing. From there, the company expects to apply those lessons to the first flight test models of the Starliner, parts of which are already in the manufacturing flow in Florida.

“Our team is initiating qualification testing on dozens of components and preparing to assemble flight hardware,” said John Mulholland, vice president and program manager of Boeing’s Commercial Programs. “These are the first steps in an incredibly exciting, important and challenging year.”

The building techniques used for Starliners are significantly different from those of past programs, Boeing said, and reflect a desire to ease manufacturing wherever possible. For instance, rather than build the pressure vessel and then outfit it with electrical and data cables, plumbing and other fittings, those elements are built into the top and bottom halves of the spacecraft. When the domes are joined, the cables and lines and pipes are already in place, saving engineers the time and frustration of having to move everything in through the small hatch and assemble parts together inside the closed hull.

It is just that kind of manufacturing innovation, along with scores of other examples, that NASA was pursuing in taking on the Commercial Crew Program approach to spacecraft development for the next generation of human-rated vehicles. Photo credits: BoeingSTAjoin-5

Astronaut Visits Starliner Component Makers in California

MeganmcarthurchrisfergcomputertechMeganMcarthur-solosuitVeteran astronaut Megan McArthur toured two of the companies building components for Boeing’s CST-100 Starliner spacecraft recently and met with some of the employees who are designing and making sensors and circuit boards the spacecraft and its crews will rely on to steer precisely to the International Space Station. She was joined by Chris Ferguson, a former space shuttle commander who is now Boeing’s director of Crew and Mission Operations for Commercial Crew. Boeing is one of two companies under contract with NASA’s Commercial Crew Program to develop spacecraft systems to take astronauts to the space station. The missions will enhance research by increasing the number of crew members aboard the orbiting laboratory.

McArthur, who flew as a mission specialist on STS-125 and captured the Hubble Space Telescope with the shuttle’s robotic arm, visited Advanced Scientific Concepts in Santa Barbara, California, on April 7 where she surveyed the 3D Flash Light Detection and Ranging sensors the company is making. The LIDAR gear will let Starliner crews see the station in all conditions in space during a mission. The next day, McArthur visited Qual-Pro Corp in Gardena, California, where engineers are making the circuit boards that will allow Starliner systems to communicate with each other.

“It’s never about the individual or just the crew members who are in space,” McArthur said. “It’s always about the team of folks who are getting us ready to fly, who are getting the hardware ready to fly and keeping us safe while we’re up there. It’s not something we can ever succeed at by ourselves.” Meganmcarthurchrisferguson

The Team That Will Launch America

I will Launch header_1041x640-2

We’ve profiled some of the NASA and aerospace industry professionals behind Commercial Crew’s success and more are on the way as we debut our new “I Will Launch America” page featuring the engineers and spaceflight specialists designing, testing and soon to be operating the next generation of human-rated spacecraft to fly astronauts from American soil. From launch system specialists who are determining what the rocket needs to have aboard for a safe launch, to the team evaluating the control systems in the spacecraft that astronauts will use, the people on our “I Will Launch America” series are designing and building the future of American spaceflight. Rad more at http://go.nasa.gov/1QTTAZO

May 5, 1961: Al Shepard and Freedom 7

Astronaut Virgil I. "Gus" Grissom wishes Alan B. Shepard a safe flight just before insertion into the Freedom 7 spacecraft mated on the Redstone rocket.

Launch of Freedom 7, the first American manned suborbital space flight. Astronaut Alan Shepard aboard, the Mercury-Redstone (MR-3) rocket is launched from Pad 5.Astronaut Al Shepard, above with Gus Grissom, made history 55 years ago today as he launched in Freedom 7 atop a Mercury-Redstone rocket to become the first American in space. The rocket lofted Shepard using a 78,000-pound thrust engine, less powerful than the abort engine clusters in development by Boeing and SpaceX for NASA’s Commercial Crew Program spacecraft.

 

I Will Launch America: Steve Gauvain

I will Launch_Steve_FB_new title

Tablets, a few physical buttons and a pair of joysticks will be the control tools for the next generation of NASA astronauts onboard Boeing’s CST-100 Starliner. Making those systems work – for both automated and manual use – is the domain of a team of engineers lead by Steve Gauvain, an amateur pilot who worked for years training astronauts to fly the space shuttle. Find out about Gauvain’s work and what it means to the future of human spaceflight in the latest edition of “I Will Launch America” at http://go.nasa.gov/1WIOSFh

 

Astronauts ‘Fly’ Starliner Simulators During St. Louis Trip

IMG_9576IMG_0008Commercial Crew astronauts Suni Williams and Eric Boe put a pair of Boeing trainers through a host of mission paces Tuesday as they evaluated the systems that they and other astronauts will use to train for every detail and situation that could arise during a CST-100 Starliner mission to the International Space Station.

Built by Boeing at the company’s St. Louis facility, the machines are known as Crew Part-Task Trainers and are set up exactly like a Starliner’s control system. They will be shipped to the Jake Garn Training Facility at NASA’s Johnson Space Center in Houston later this year and will be joined by a full-size Starliner simulator that replicates an entire spacecraft.

In addition to Boe and Williams, astronauts Bob Behnken and Doug Hurley also were selected in July 2015 to train for flight tests aboard spacecraft in development for NASA’s Commercial Crew Program by Boeing and SpaceX. The astronauts have not been assigned to specific missions or spacecraft, so all four are cross-training on both the Starliner and SpaceX Crew Dragon. Read more details about today’s training and the earlier eras of spaceflight that the simulators conjured in our feature story at http://go.nasa.gov/1rgpM4W Photo credits: NASA/Dmitri Gerondidakis

I Will Launch America: Dayna Ise

I will Launch_Dayna_FB_finalAmerican-built rockets will soon once again launch astronauts from American soil, and Dayna Ise, an engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, is excited to be part of the program making this possible.

“Of all the projects I have been part of with NASA in my 15 years, this is easily the work I am most proud of,” said Ise, who started her career working on space shuttle main engines. “I joined the team early on, almost five years ago, and it’s been fun to see it grow. It’s exciting to be part of program that will launch astronauts to the space station from American soil and allow NASA more resources for exploration deeper into our solar system.”

NASA’s ultimate goal with the Commercial Crew Program is to establish reliable and cost-effective human access to space. In the Launch Vehicle Office, Ise works with industry partners to ensure all launch vehicle requirements and standards are met before launching astronauts for NASA.

Learn more about Dayna and the work she is doing to return human spaceflight launches to the U.S. http://go.nasa.gov/1VrYllI

CCP at 5: The Verge of New Era

CCP_5th_FB_Twitter

Five years in, NASA’s Commercial Crew Program is at the doorstep of launch for a new generation of spacecraft and launch vehicles that will take astronauts to the International Space Station, enhance microgravity research and open the windows to the dawn of a new era in human space transportation.

The agency asked industry to take the lead in designing, building and operating a space system that would carry astronauts. NASA offered its expertise in human spaceflight and wrote out the top-level requirements for safety and other considerations to prepare for flight tests. NASA will certify the vehicles for flight tests and finally operational missions. The companies apply their own knowledge and skills in designing, manufacturing and running the systems. Ultimately, NASA will buy the flights as a service from the companies.

“It’s what we hoped the program to be and honestly a lot more,” said Wayne Ordway, who began as the manager of the Commercial Crew Program’s Spacecraft Office and rose to the position associate program manager.

This progress was hoped for, but took tremendous work and flexibility, according to members of the early efforts to transform the fledgling vision of a close partnership between NASA and private industry into a functioning organization capable of establishing requirements for a new generation of human-rated spacecraft and then seeing to it that those requirements were met.

“This is a new way of doing business, a new era in spaceflight, and when it’s all said and done, the Commercial Crew Program’s legacy will be bringing human spaceflight launches back to the U.S.,” said Kelvin Manning, who was involved in the early planning days of the commercial crew effort, and is now associate director of NASA’s Kennedy Space Center in Florida. “That’s a big deal and our teams are making it happen.” Read the whole story at http://go.nasa.gov/1VVLruA

I Will Launch America: Launch Vehicle Chief Engineer Dan Dorney

I will Launch_Dan_FBAs a 7-year-old boy growing up in Kalamazoo, Michigan, in 1969, Dorney watched the Apollo 11 moon landing from his living room and decided he needed to build his own rocket. He sent a letter to NASA asking how to do that. Much to his parents’ surprise, he got a response – NASA sent him plans to build a simple model rocket. Which he immediately rejected.

“I wanted the real wiring schematics and engine plans,” Dorney says. “I wanted to build my own life-size rocket to go to the moon. I was ready to be an aerospace engineer.”

Learn more about Dan and the work he is doing to return human spaceflight launches to the U.S. http://go.nasa.gov/1RYx5aj