All About the Crew Access Arm

Commerical Crew Program (CCP) Crew Access Arm Installation

Space Launch Complex 41 at Cape Canaveral Air Force Station looks different today after workers attached the Crew Access Arm and White Room to the Crew Access Tower. The work at the launch pad was done in preparation for missions to the International Space Station by astronauts aboard Boeing’s CST-100 Starliner. The addition completes major construction of the tower which was added to the launch pad specifically so astronauts could board the Starliner on launch day. The arm, a 50-foot-long, 90,000-pound structure, will provide a bridge from the tower to the hatch of the spacecraft as it stands atop a United Launch Alliance Atlas V rocket.

Although the launch pad and Atlas V have launched many missions including some of NASA’s landmark exploration spacecraft, astronauts have never left the planet from that launch pad on an Atlas V. The companies are working with NASA’s Commercial Crew Program to change that and to restore America’s capability to launch astronauts to the station from Florida’s Space Coast. Read more about today’s progress in our feature at http://go.nasa.gov/2aP3ALQ Photo credit: NASA/Kim Shiflett

Workers Install Astronauts’ New Bridge to Orbit

Commerical Crew Program (CCP) Crew Access Arm InstallationA 50-foot-long, 90,000-pound bridge to space known as the Crew Access Arm was installed today at Space Launch Complex 41 at Cape Canaveral Air Force Station adjacent to NASA’s Kennedy Space Center in Florida. Workers have been modifying the launch pad so astronauts can climb aboard Boeing’s CST-100 Starliner spacecraft ahead of NASA Commercial Crew Program missions to the International Space Station.

Commerical Crew Program (CCP) Crew Access Arm InstallationWhen poised for space on launch day, the Starliner will be standing atop a United Launch Alliance Atlas V rocket. The arm and a White Room were attached to the Crew Access Tower, a 200-foot-tall structure at the launch pad that has been built specifically for the unique needs of astronauts. For example, crews wearing pressure suits and helmets need more room to move around than people wearing regular clothes, so the areas and elevators are wide enough to accommodate them. There also was special care to avoid anything that could snag a spacesuit.

The construction by ULA has taken place even as the pad has remained active for launches of the Atlas V on missions to deliver satellites into orbit and to loft NASA spacecraft on their own missions, including September’s launch of the OSIRIS-REx asteroid sampling spacecraft.

The arm’s placement is the latest in a growing list of accomplishments for the Commercial Crew Program and its partners as NASA works to restore America’s capability to launch astronauts to the space station from its own soil. With Boeing’s Starliner and SpaceX’s Crew Dragon flying astronauts to the station, the crew there can grow to seven residents and the amount of science time available for astronauts will double. That means enhanced research opportunities to figure out the mysteries of long-duration spaceflight as well as more time to work on aspects of life on Earth that can be improved with the help of science performed in space.

“You have to stop and celebrate these moments in the craziness of all the things we do,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “It’s going to be so cool when our astronauts are walking out across this access arm to get on the spacecraft and go to the space station.”

Photo credit: NASA/Kim Shiflett

 

Boeing Debuts Modernized High Bay at Kennedy

Boeing unveils its modernized high bay in the Commercial Crew and Cargo Processing Facility at Kennedy Space CenterBoeing on Tuesday unveiled its clean-floor facility that serves as the hub for its CST-100 Starliner spacecraft as they are manufactured and prepared for flight to and from the International Space Station, and where they’ll refurbished between missions. The high bay in the company’s Commercial Crew and Cargo Processing Facility, formerly known as Orbiter Processing Facility 3, is now modernized and ready to support the Starliner program.

It was once filled with about 1,000 tons of steel work platforms that enshrouded the space shuttle orbiters as they were refurbished and prepared for flight. Today, the facility contains several pieces of hardware and a mock-up that are key to Boeing’s and NASA’s efforts to launch astronauts from Florida’s Space Coast through the Commercial Crew Program.

Read the full story here.

(Photo credit: NASA/Kim Shiflett)

Aerojet Rocketdyne Tests Starliner Service Module Engines

One of three Reaction Control System engines for Boeing’s CST-100 Starliner recently completed hot-fire testing at NASA’s White Sands Test Facility in New Mexico.The small jets designed to steer Boeing’s CST-100 Starliner spacecraft in orbit were fired in a vacuum chamber recently at NASA’s White Sands Test Facility in New Mexico. Testing continues for elements of the new Starliner spacecraft before components are installed into the first space-bound capsule. Aerojet Rocketyne built the reaction control engines and used a chamber to pulse fire three engines up to 4,000 times for a total of 1,600 seconds each. Both are record times for lightweight thrusters with composite chambers.

One of three Reaction Control System engines for Boeing’s CST-100 Starliner recently completed hot-fire testing at NASA’s White Sands Test Facility in New Mexico.Aerojet Rocketdyne is testing and will provide the service module propulsion system production hardware, including launch abort engines, orbital maneuvering and attitude control engines and reaction control system engines. Boeing will assemble hardware kits into the service module section of the Starliner spacecraft at its Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida.

The Starliner is one of two spacecraft in development in partnership with NASA’s Commercial Crew Program. While Boeing develops and manufactures Starliners, SpaceX is doing the same with its own spacecraft, Crew Dragon. Both companies plan to launch astronauts from Florida’s Space Coast on missions to the International Space Station. With up to four astronauts at a time, plus more than 200 pounds of cargo, the new line of spacecraft will allow the station’s crew to grow to seven. That addition gives astronauts In orbit another 35 hours of research time to enhance the science conducted on the orbiting laboratory.

(Photo credits: Aerojet Rocketdyne)

Five Years After Shuttle, Missions Near for Commercial Crew

4X v1A new era of human spaceflight in America is approaching on the horizon five years after the space shuttle era ended with the touch down of Atlantis on the runway at Kennedy Space Center in Florida. Built from the best of NASA’s Commercial Crew Program’s expertise plus the innovation of top American aerospace companies, spacecraft and rockets designed and built using a new approach to development are taking shape inside factories across the nation. Intensive test programs are underway on Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon transportation systems, both built to take astronauts to the International Space Station from the United States. A lot has happened during the past five years, and the pace is picking up: http://go.nasa.gov/24QDPuA

Dragon Arrives at Station with Docking Adapter

CRS9-capture IDA-1onstationschematicThe Dragon spacecraft that SpaceX launched early Monday morning from Cape Canaveral Air Force Station in Florida arrived at the International Space Station today carrying a docking adapter that is crucial to future spacecraft including those in development with NASA’s Commercial Crew Program. The International Docking Adapter-2 will be pulled from the trunk of the Dragon by the station’s robotic arm Aug. 16. Then astronauts will make a spacewalk two days later to permanently connect the adapter to the end of the station’s Harmony node.

The adapter – a 1,020-pound metal ring big enough for astronauts to move through – has been built with a host of sensors that visiting spacecraft will use to help them dock to the station autonomously. Another docking adapter currently in assembly at Kennedy Space Center will be flown to the station on a future flight and connected to give the orbiting laboratory a second updated docking location. Currently, supply craft such as the Dragon have to be captured by the robotic arm and placed at a hatch. That process requires extensive work by the astronauts aboard the station. With the adapter in place however, automated systems on the spacecraft can steer towards the station and make a safe connection.

Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon are designed with computerized guidance and navigation systems that will conduct the flight plan by themselves even when astronauts are aboard. Of course, the both spacecraft also include the ability for astronauts to take over if needed.IAD_Install_4[6]

I Will Launch America: Steve Payne

I_Will_Launch_Steve Payne_FB_final

When he’s not building model rockets, Payne is hard at work performing launch integration for NASA’s Commercial Crew Program. Both Boeing and SpaceX are developing spacecraft and launch systems to carry astronauts to and from the International Space Station. Read what Payne is doing to help Launch America’s new generation of human-rated spacecraft at http://go.nasa.gov/29W32UN

Testing Starliner’s Accommodations

Boeing CST-100

Boeing is evaluating the flight deck designs for its CST-100 Starliner spacecraft as development work continues toward the final layout of the seating and control panels. Former astronaut Chris Ferguson, now deputy program manager and director of Crew and Mission Operations for Boeing’s Commercial Crew Program, is performing the tests that look into a number of factors of comfort and usability for the systems. The Starliner is being developed by Boeing in partnership with NASA’s Commercial Crew Program to take astronauts to the International Space Station. The spacecraft will launch into orbit aboard a United Launch Alliance Atlas V lifting off from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, just a few miles from the Starliner’s assembly factory at Kennedy Space Center. Photo credit: Boeing

Astronauts, Mission Control Simulate Commercial Crew Flight

Commerical Crew Program astronauts Bob Behnken and Eric Boe perfoming and on-console simulation of Boeing's CST-100 Starliner at Johnson Space Center (JSC)

Commerical Crew Program astronauts Bob Behnken and Eric Boe perfoming and on-console simulation of Boeing's CST-100 Starliner at Johnson Space Center (JSC)

Commerical Crew Program astronauts Bob Behnken and Eric Boe perfoming and on-console simulation of Boeing's CST-100 Starliner at Johnson Space Center (JSC)

Commercial Crew Program astronauts Bob Behnken and Eric Boe joined flight director Richard Jones and his NASA/Boeing flight control team in the first Mission Control Center, Houston, on-console simulation of Boeing’s CST-100 Starliner launch, climb to orbit and post-orbital insertion timeline.

The ascent simulation included a training team inserting problems remotely from a nearby building, which allowed the team to follow checklists and procedures to solve issues that could arise during a dynamic, real-flight situation.

Boeing has an agreement in place with NASA’s Johnson Space Center to provide flight control and facility expertise in managing missions of the Starliner and United Launch Alliance Atlas V rocket. Simulations covering all aspects of human space flight control have been conducted for every human space flight and prepare the astronauts and flight controllers for the real flights.

Behnken and Boe along with Doug Hurley and Suni Williams are integrated as a group with Boeing and SpaceX on its Dragon crew vehicle through the development phase and first test flights. Specific crew assignments have not yet been announced. Read more about the advances NASA’s Commercial Crew Program have made in 2016: http://go.nasa.gov/24QDPuA