Three NASA astronauts, including two training for flight tests aboard Commercial Crew Program spacecraft, toured the Aerojet Rocketdyne facility in West Palm Beach, Florida, on Friday and watched as an RL10 engine was successfully test-fired. The engine, which burns hydrogen and oxygen to produce 22,300 pounds of thrust, has been used for numerous NASA missions to send satellites into their correct orbits and to loft planetary probes into the solar system. The engine has never been used for human spaceflight, though.
That is slated to change because the engine tested in West Palm Beach is one of two slated to power the United Launch Alliance Atlas V Centaur upper stage being built for the Crewed Flight Test of Boeing’s CST-100 Starliner spacecraft that will fly for Commercial Crew. Read the details of the tour and testing, as well as some of the thoughts of the astronauts: http://go.nasa.gov/2aZ2XPN Photos credit: NASA/Dimitri Gerondidakis
Space Launch Complex 41 at Cape Canaveral Air Force Station looks different today after workers attached the Crew Access Arm and White Room to the Crew Access Tower. The work at the launch pad was done in preparation for missions to the International Space Station by astronauts aboard Boeing’s CST-100 Starliner. The addition completes major construction of the tower which was added to the launch pad specifically so astronauts could board the Starliner on launch day. The arm, a 50-foot-long, 90,000-pound structure, will provide a bridge from the tower to the hatch of the spacecraft as it stands atop a United Launch Alliance Atlas V rocket.
Although the launch pad and Atlas V have launched many missions including some of NASA’s landmark exploration spacecraft, astronauts have never left the planet from that launch pad on an Atlas V. The companies are working with NASA’s Commercial Crew Program to change that and to restore America’s capability to launch astronauts to the station from Florida’s Space Coast. Read more about today’s progress in our feature at http://go.nasa.gov/2aP3ALQ Photo credit: NASA/Kim Shiflett
A 50-foot-long, 90,000-pound bridge to space known as the Crew Access Arm was installed today at Space Launch Complex 41 at Cape Canaveral Air Force Station adjacent to NASA’s Kennedy Space Center in Florida. Workers have been modifying the launch pad so astronauts can climb aboard Boeing’s CST-100 Starliner spacecraft ahead of NASA Commercial Crew Program missions to the International Space Station.
When poised for space on launch day, the Starliner will be standing atop a United Launch Alliance Atlas V rocket. The arm and a White Room were attached to the Crew Access Tower, a 200-foot-tall structure at the launch pad that has been built specifically for the unique needs of astronauts. For example, crews wearing pressure suits and helmets need more room to move around than people wearing regular clothes, so the areas and elevators are wide enough to accommodate them. There also was special care to avoid anything that could snag a spacesuit.
The construction by ULA has taken place even as the pad has remained active for launches of the Atlas V on missions to deliver satellites into orbit and to loft NASA spacecraft on their own missions, including September’s launch of the OSIRIS-REx asteroid sampling spacecraft.
The arm’s placement is the latest in a growing list of accomplishments for the Commercial Crew Program and its partners as NASA works to restore America’s capability to launch astronauts to the space station from its own soil. With Boeing’s Starliner and SpaceX’s Crew Dragon flying astronauts to the station, the crew there can grow to seven residents and the amount of science time available for astronauts will double. That means enhanced research opportunities to figure out the mysteries of long-duration spaceflight as well as more time to work on aspects of life on Earth that can be improved with the help of science performed in space.
“You have to stop and celebrate these moments in the craziness of all the things we do,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “It’s going to be so cool when our astronauts are walking out across this access arm to get on the spacecraft and go to the space station.”
A new Crew Access Arm and White Room built for the next generation of human-rated spacecraft is headed to Space Launch Complex 41 today, passing by the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida along the way. Weighing about 90,000 pounds and reaching almost 50 feet, the arm and white room were hauled from a construction yard in Oak Hill, where the structure was built and its mechanisms tested, through Kennedy. The arm will provide a vital bridge from the Crew Access Tower at SLC-41 to Boeing’s CST-100 Starliner as it stands on the launch pad atop a United Launch Alliance Atlas V rocket. Crew members will cross the arm and prep in the White Room before climbing through the Starliner’s hatch and getting into place for liftoff on Commercial Crew Program missions carrying astronauts to the International Space Station to conduct research in orbit.
Boeing and United Launch Alliance designed and built the arm and White Room based on their unique design and lessons learned from NASA’s more than 50 years of spaceflight. Today’s move will conclude at the base of SLC-41, then the arm is targeted to be lifted into place Saturday. The arm is fitted with several systems ranging from electrical cables, data lines and lighting to water pipes. Engineers have spent months testing the components including the machinery that will swing the arm between the spacecraft and tower. Photo credit: NASA/Michelle Stone
NASA’s Commercial Crew Program placed an order for the second operational mission to carry astronauts to the International Space Station aboard SpaceX’s Crew Dragon spacecraft. The order means that eight vehicles are now in different levels of planning for Commercial Crew flight tests and operational missions by SpaceX and by Boeing, which also is developing the CST-100 Starliner spacecraft for human-rated missions to the space station. The eight missions in process are:
2 uncrewed flight tests, one for each company,
2 crewed flight tests, one each,
4 operational missions ordered to date.
The order was placed now because of the long lead time to build a spacecraft, test it and process it for launch.
“The order of a second crew rotation mission from SpaceX, paired with the two ordered from Boeing will help ensure reliable access to the station on American spacecraft and rockets,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “These systems will ensure reliable U.S. crew rotation services to the station, and will serve as a lifeboat for the space station for up to seven months.”
This is the fourth and final guaranteed order NASA will make under the Commercial Crew Transportation Capability contracts. Boeing received its two orders in May and December of 2015, and SpaceX received its first order in November 2015. Both companies have started planning for, building and testing the necessary hardware and assets to carry out their first flight tests, and ultimately missions for the agency. NASA will identify at a later time which company will fly the first post-certification mission to the space station.
A new era of human spaceflight in America is approaching on the horizon five years after the space shuttle era ended with the touch down of Atlantis on the runway at Kennedy Space Center in Florida. Built from the best of NASA’s Commercial Crew Program’s expertise plus the innovation of top American aerospace companies, spacecraft and rockets designed and built using a new approach to development are taking shape inside factories across the nation. Intensive test programs are underway on Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon transportation systems, both built to take astronauts to the International Space Station from the United States. A lot has happened during the past five years, and the pace is picking up: http://go.nasa.gov/24QDPuA
The Dragon spacecraft that SpaceX launched early Monday morning from Cape Canaveral Air Force Station in Florida arrived at the International Space Station today carrying a docking adapter that is crucial to future spacecraft including those in development with NASA’s Commercial Crew Program. The International Docking Adapter-2 will be pulled from the trunk of the Dragon by the station’s robotic arm Aug. 16. Then astronauts will make a spacewalk two days later to permanently connect the adapter to the end of the station’s Harmony node.
The adapter – a 1,020-pound metal ring big enough for astronauts to move through – has been built with a host of sensors that visiting spacecraft will use to help them dock to the station autonomously. Another docking adapter currently in assembly at Kennedy Space Center will be flown to the station on a future flight and connected to give the orbiting laboratory a second updated docking location. Currently, supply craft such as the Dragon have to be captured by the robotic arm and placed at a hatch. That process requires extensive work by the astronauts aboard the station. With the adapter in place however, automated systems on the spacecraft can steer towards the station and make a safe connection.
Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon are designed with computerized guidance and navigation systems that will conduct the flight plan by themselves even when astronauts are aboard. Of course, the both spacecraft also include the ability for astronauts to take over if needed.
The 1,020-pound docking adapter scheduled to fly to the International Space Station aboard SpaceX’s CRS-9 mission will become an integral part of the orbiting laboratory in short order, experts from the agency’s Commercial Crew Program and Boeing told news media and social media participants this morning.
Jon Cowart of NASA’s Commercial Crew Program and David Clemen of Boeing stood in front of an identical adapter – still in assembly for launch on an upcoming SpaceX CRS mission – as they talked to the groups inside the Space Station Processing Facility. Once in place on the station, the docking ring will give visiting spacecraft the ability to autonomously steer themselves to a safe connection with the station without requiring astronaut involvement. The ring now in assembly will provide a second port compatible with the new spacecraft so two spacecraft can be docked at the station at the same time. There is much more to the adapter’s story at http://go.nasa.gov/29KJumC
When he’s not building model rockets, Payne is hard at work performing launch integration for NASA’s Commercial Crew Program. Both Boeing and SpaceX are developing spacecraft and launch systems to carry astronauts to and from the International Space Station. Read what Payne is doing to help Launch America’s new generation of human-rated spacecraft at http://go.nasa.gov/29W32UN