NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

Boeing's CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021.
Boeing’s CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021. Photo credit: Boeing

NASA and Boeing have decided to postpone the launch of Orbital Flight Test-2 to the International Space Station as teams continue work on the CST-100 Starliner propulsion system.

Engineering teams have been working to restore functionality to several valves in the Starliner propulsion system from inside United Launch Alliance’s Vertical Integration Facility that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

“We made a lot of progress to open the valves from inside the Vertical Integration Facility, and the NASA-Boeing teams did a great job doing everything we could to get ready for this launch opportunity,” said Kathryn Lueders, associate administrator for NASA’s Human Exploration and Operations Mission Directorate. “Although we wanted to see Starliner fly in this window, it’s critical that our primary focus is the safety of the crew transportation system – for the safety of the space station and the crew members that will be flying on these vehicles. We’ll only fly this test when we think we are ready, and can complete the mission objectives.”

Inside the VIF, Boeing was able to prompt nine of 13 valves open that previously were in the closed position using commanding, mechanical, electrical and thermal techniques. Teams will now begin the process to move Starliner back to Boeing’s Commercial Crew and Cargo Processing Facility in Florida for deeper-level troubleshooting of four propulsion system valves that remain closed and more detailed analysis on the spacecraft.

“Mission success in human spaceflight depends on thousands of factors coming together at the right time,” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program. “We’ll continue to work the issue from the Starliner factory and have decided to stand down for this launch window to make way for other national priority missions.”

NASA, Boeing and ULA will establish a new launch date once the issue is resolved.

The Atlas V to Lift Starliner with Astronauts Departs Factory for Launch Site

From the manufacturing facility in Decatur, Alabama, the Atlas V booster stage and Dual Engine Centaur upper stage were rolled into a giant cargo ship for transport to Cape Canaveral, Florida. Photo credit: NASA/Emmett Given

The United Launch Alliance Atlas V rocket that will launch Boeing’s CST-100 Starliner on the Crew Flight Test (CFT) mission to the International Space Station for NASA’s Commercial Crew Program emerged on Thursday from the production factory in Decatur, Alabama for transport in a giant cargo ship to Cape Canaveral Air Force Station in Florida.

Once at Cape Canaveral Air Force Station in Florida, the United Launch Alliance Atlas V rocket will begin integrated operations and processing for the Crew Flight Test mission. Photo credit: NASA/Emmett Given

The rocket, known as AV-082, will launch Starliner and its crew of NASA astronauts Mike Fincke and Nicole Mann, and Boeing astronaut Chris Ferguson to the  station following the spacecraft’s maiden voyage, the uncrewed Orbital Flight Test targeted for August.

From the manufacturing facility in Decatur, Alabama, the Atlas V booster stage and Dual Engine Centaur upper stage were moved down the road for loading into the Mariner vessel docked nearby. The 312-foot-long ship is purpose-built to navigate both shallow waters of rivers and ocean travel to reach ULA’s launch sites. It has been making the trek from Decatur to Cape Canaveral since 2001.

Once at Cape Canaveral, the Atlas V will begin integrated operations and processing for the CFT launch.

NASA selected Boeing and SpaceX to transport crew to the space station from the United States, returning the nation’s human spaceflight launch capability. These integrated spacecraft, rockets and associated systems will carry up to four astronauts on NASA missions.

Regular commercial transportation using Boeing’s Starliner and SpaceX’s Crew Dragon spacecraft to and from the station will enable expanded station use and additional research time aboard the orbiting laboratory. Research on the space station helps address the challenges of moving humanity forward to the Moon and Mars as we learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for human and robotic exploration beyond low-Earth orbit.