Today, NASA Administrator Charlie Bolden blogged about the agency’s plan, vision and timetable for sending American astronauts to the Red Planet in the 2030s. By building a robust commercial market in low-Earth orbit, the agency is able to focus on simultaneously getting our astronauts to deep space.
“Competition, innovation and technology – it’s the American way,” said NASA Administrator Charlie Bolden. “It’s helping us to Launch America.” Read more of Bolden’s blog at http://go.nasa.gov/1Q8VLNX
Commercial Crew astronauts Bob Behken and Eric Boe sat at the simulated controls of Boeing’s CST-100 Starliner recently as they evaluated sophisticated systems designed to train astronauts and mission controllers prior missions to the International Space Station. Behknen and Boe are two of four NASA astronauts, including Doug Hurley and Suni Williams selected to work closely with Boeing and SpaceX as the companies finalize their systems. Crews have not been assigned to specific missions or spacecraft, so the team is cross-training and aiding in development of both.
The simulators were built at Boeing’s St. Louis facility and will be installed at NASA’s Johnson Space Center in Houston for training by astronauts and mission controllers. The simulators are extremely advanced and able to replicate numerous mission phases and flight conditions in order to prep crews how to handle the circumstances correctly. Traditionally, astronauts rely heavily on simulator training.
“We have been learning about the spacecraft displays through slideshows,” Boe said. “It’s great to finally see what we are actually going to train on. The trainers look great, and this visit gives us an opportunity to meet with the Boeing engineers. We appreciate them allowing us to give input on these trainers so the devices are ready when they arrive at Johnson Space Center.”
Behnken added that the training equipment is comprehensive.
“Historically, some trainers were just a simple component that might have a very specific task,” he said. “This one has a lot of capability with multiple tasks coming together so it can execute more complicated training scenarios.”
NASA astronaut Ricky Arnold recently got an up-close look at the environmental control and life support system, known as the ECLSS, that Boeing will integrate into its CST-100 Starliner spacecraft for crew flights to the International Space Station. The visit with UTC Aerospace Systems in Windsor Locks, Connecticut, on Dec. 9 allowed the team to show off the critical components of the system designed to keep astronauts and the Starliner’s electrical systems safe in space, including cool, breathable air. The team recently passed a critical design review of the system, which will be fully integrated next year.
“There is a firm belief that private industry is capable of doing great things and bringing us safely into low-Earth orbit,” Arnold said. “We want our long-term partners like you to share in the excitement we are feeling at NASA. We are looking forward to returning launch capability to U.S. soil with a vehicle that has the American flag on the side of it. I can tell you that the astronauts are getting excited and jockeying for position on a commercial crew vehicle, realizing that may be their ticket to space.”
NASA’s Commercial Crew Program took vital steps in 2015 to move America closer to flying astronauts from its own soil aboard American spacecraft in 2017. Boeing and SpaceX, each a partner with NASA on separate crew transportation systems, performed systems tests, built up assembly areas and modified the launch pads at Kennedy Space Center and Cape Canaveral Air Force Station to safely launch crew members from the storied shores of Florida’s Space Coast.
We chose the top 15 accomplishments, including:
– NASA Named First Four Astronauts to Train with Boeing and SpaceX – United Launch Alliance Completed Crew Access Tower Column at SLC-41 – Crew Dragon Completed Pad Abort Test
Astronauts spent part of their spacewalk Monday morning routing power and data system cables on the International Space Station to ports where spacecraft being developed in partnership with NASA’s Commercial Crew Program will dock to the orbiting laboratory in the near future. The cables will be connected to a pair of International Docking Adapters once they are delivered during upcoming, uncrewed commercial resupply missions. The adapters contain several sensor systems that will allow spacecraft to autonomously dock with the station. NASA astronauts Scott Kelly, who is nine months into a yearlong mission and Tim Kopra, who arrived to the station Dec. 15, made the spacewalk.
NASA’s Commercial Crew Program placed an order for the second operational mission to carry astronauts to the International Space Station aboard Boeing’s CST-100 Starliner spacecraft. The order means that seven vehicles are now in different levels of planning for Commercial Crew flight tests and operational missions by Boeing and by SpaceX, which also is developing the Crew Dragon spacecraft for human-rated missions to the space station. The seven missions in process are:
2 uncrewed flight tests, one for each company, 2 crewed flight tests, one each, 3 operational missions ordered to date.
The order was placed now because of the long lead time to build a spacecraft, test it and process it for launch.
“Once certified by NASA, the Boeing CST-100 Starliner and SpaceX Crew Dragon each will be capable of at least two crew launches to the station per year,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “Placing orders for those missions now really sets us up for a sustainable future aboard the International Space Station.”
This is the third in a series of four guaranteed orders NASA will make under the Commercial Crew Transportation Capability contracts known as CCtCap. Boeing and SpaceX received their first orders in May and November, respectively, and have started planning for, building and procuring the necessary hardware and assets to carry out their first missions for the agency. NASA will identify at a later time which company will fly a mission to the station first. There are many more details to this story and you can read them at http://go.nasa.gov/1IZhxSH
Some of the best works of art come from children who are only limited by their imaginations, like the more than 150 young explorers from across the country who submitted artwork depicting human spaceflight as they see it. Sixteen masterpieces were chosen to be included in the Commercial Crew Program’s 2016 Children’s Artwork Calendar, which is now available for download here. We offer a huge “thank you!” to all the explorers, ranging in age from four to 12, who submitted their work and hope that everyone will enjoy and use this calendar next year.
Have you ever wanted to explore to a galaxy far, far away? Is the Force strong in you? NASA seeks sky walkers to join the astronaut alliance. Learn more, at www.nasa.gov/astronauts.
Astronauts Bob Behnken, left to right, Suni Williams, Eric Boe and Doug Hurley.
Four astronauts training for test flights with NASA’s Commercial Crew program joined the festivities at Space Launch Complex 41 Thursday morning as one of the highest steel beams was placed on the Crew Access Tower during a “topping off” ceremony with United Launch Alliance, Boeing and Hensel Phelps at the Cape Canaveral Air Force Station launch site in Florida.
“It’s really an honor to get down here. We’re humbled to be a part of launching rockets for the United States again,” said Doug Hurley, a veteran of space shuttle missions and one of the four chosen to work closely with partners of NASA’s Commercial Crew Program during development, testing and training. Bob Behnken, Eric Boe and Suni Williams were also selected and took part in the employee-focused event.
“It’s amazing how many people it takes to get us into space,” Boe said.
A large crowd of employees from numerous companies gathered mid-morning to sign the 650-pound beam and watch a crane lift it into place atop the 200-foot-tall Crew Access Tower constructed over the past year. It was built in segments complete with stairs, cable trays and other fittings a few miles from the launch pad, then those segments were stacked on top of each other to form the tower. The Crew Access Arm and White Room the astronauts looked over today will be attached to the tower after several months’ of testing and fit checks.
“We’ve poured 1,000 cubic yards of concrete and mounted nearly 1 million pounds of steel, and we’ve done it in spectacular fashion,” said Howard Biegler, launch operations lead for ULA’s Human Launch Services.
Employees were asked to sign the beam before it was lifted into place and welded to the top of the tower.
“Today you are part of history,” said Kathy Lueders, program manager of NASA’s Commercial Crew Program. “Stop and enjoy this moment. I hope everyone has been able to write their name on the beam because you are part of the critical safety network that is making this all possible.”
Prior to the ceremony at SLC-41, the astronauts toured the White Room and Crew Access Arm undergoing testing at a construction yard near Kennedy Space Center. The White Room will be the stepping off point to space for astronauts as they board a Boeing CST-100 Starliner for liftoff on a ULA Atlas V rocket. Designed as a clean area to keep contaminants out of the spacecraft and off the astronauts’ suits, white rooms are the place where technicians make last-minute additions to the spacesuit and make sure everything is ready to flight as the flight crew climbs inside for launch. White rooms have always been a part of NASA’s human spaceflight efforts, from Mercury to Gemini and Apollo to the space shuttle.
“This is the last thing that whoever flies the Starliner is going to see before they go into space,” Hurley told the workers who built the structures.
Boeing and SpaceX are developing a new generation of spacecraft to carry astronauts to the International Space Station beginning in 2017. Both companies are also deep into construction and modification of launch facilities at NASA’s Kennedy Space Center in Florida to safely host astronaut crews as they launch from American soil for the first time since 2011. Designs for launch facilities have been confirmed through NASA panels and in-depth examinations.
For Boeing, launching from SLC-41 meant building the Crew Access Tower, the first crew-focused structure at Cape Canaveral since Apollo 7. SpaceX is modifying historic Launch Pad 39A for its commercial crew missions on the Crew Dragon spacecraft launching on its Falcon 9 rockets. It also will have a White Room tailored to its designs that will offer astronauts and ground crew safety as they board and a way to leave the spacecraft in a hurry before launch in the unlikely event of an emergency. Photo credits: NASA/Kim Shiflett
News media and NASA Social participants were treated to a close-up look at the structural test article for Boeing’s CST-100 Starliner spacecraft as they toured the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center Tuesday afternoon.
Danom Buck, manager of the Manufacturing and Engineering team, said the test version will be built using the same techniques and processes planned for the operational spacecraft that will carry astronauts to the International Space Station for NASA’s Commercial Crew Program. Two flight tests, one without a crew and the second with a crew aboard, will be performed before the company begins operational flights to the station that will allow for an extra resident there and double the amount of astronaut time devoted to science.