In-flight abort is the final, major test before astronauts fly aboard SpaceX’s Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of NASA’s Commercial Crew Program. Photo credit: SpaceX
With the launch of SpaceX’s in-flight abort demonstration three days away, early weather reports are promising. According to Mike McAleenan, a launch weather officer with the U.S. Air Force 45th Space Wing, there is a 90 percent chance of favorable weather at liftoff. The primary concern is flight through precipitation, as some shallow coastal rain showers are predicted.
NASA and SpaceX are targeting no earlier than Saturday, Jan. 18, for the In-Flight Abort Test from Launch Complex 39A in Florida. The four-hour test window starts at 8 a.m. EST. The test will demonstrate the escape capabilities of SpaceX’s Crew Dragon spacecraft — showing that the crew system can protect astronauts even in the unlikely event of an emergency during launch.
In-flight abort is the final, major test before astronauts fly aboard the Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. For this test, SpaceX will configure Crew Dragon to intentionally trigger a launch escape prior to 1 minute, 30 seconds into flight to demonstrate Crew Dragon’s capability to safely separate from the Falcon 9 rocket in the unlikely event of an in-flight emergency.
Live coverage will begin on NASA Television and the agency’s website Friday, Jan. 17, with a pretest briefing. Watch live coverage at www.nasa.gov/nasalive.
The uncrewed in-flight abort demonstration is targeted for 8 a.m. EST Saturday, Jan. 18, from Launch Complex 39A in Florida. There is a four-hour test window. Photo credit: SpaceX
NASA and SpaceX are preparing to launch the final, major test before astronauts fly aboard the Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. The test, known as in-flight abort, will demonstrate the spacecraft’s escape capabilities — showing that the crew system can protect astronauts even in the unlikely event of an emergency during launch. The uncrewed flight test is targeted for 8 a.m. EST Saturday, Jan. 18, at the start of a four-hour test window, from Launch Complex 39A in Florida.
SpaceX performed a full-duration static test Saturday, Jan. 11, of the Falcon 9 and completed a static fire of the Crew Dragon on Nov. 13, setting the stage for the critical flight test.
Prior to launch, SpaceX and NASA teams will practice launch day end-to-end operations with NASA astronauts, including final spacecraft inspections and side hatch closeout. Additionally, SpaceX and NASA flight controllers along with support teams will be staged as they will for future Crew Dragon missions, helping the integrated launch team gain additional experience beyond existing simulations and training events.
After liftoff, Falcon 9’s ascent will follow a trajectory that will mimic a Crew Dragon mission to the International Space Station matching the physical environments the rocket and spacecraft will encounter during a normal ascent.
The United Launch Alliance Atlas V rocket, topped by the Boeing CST-100 Starliner spacecraft, stands on the launch pad at Space Launch Complex 41 at Florida’s Cape Canaveral Air Force Station on Friday, Dec. 6, during a wet dress rehearsal for Boeing’s Orbital Flight Test. Image credit: NASA
NASA and Boeing are holding a Flight Readiness Review (FRR) today at the agency’s Kennedy Space Center in Florida in preparation for Boeing’s uncrewed Orbital Flight Test as part of NASA’s Commercial Crew Program. The review provides NASA and Boeing the opportunity to assess the mission status and work that needs to be completed prior to the critical flight test.
Ken Bowersox, deputy associate administrator for Human Exploration and Operations at NASA Headquarters, is leading the meeting. The senior Boeing official at the review is Jim Chilton, senior vice president, Boeing Space and Launch.
Teams have gathered from across the agency and Boeing to hear presentations from key mission managers. The FRR is an in-depth assessment on the readiness of flight for Boeing’s CST-100 Starliner spacecraft and systems, mission operations, support functions and readiness of the space station program to support Starliner’s maiden mission to the International Space Station. The meeting will conclude with a poll of all members of the review board.
Starliner will launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida to rendezvous and dock with the orbiting laboratory. Launch is targeted for Friday, Dec. 20.
The flight test will provide valuable data NASA will review as part of the process to certify Boeing’s crew transportation system is as safe as possible for carrying astronauts to and from the space station.
A Centaur upper stage is lifted at the Space Launch Complex 41 Vertical Integration Facility at Florida’s Cape Canaveral Air Force Station on Nov. 8, 2019, for mating to the United Launch Alliance Atlas V first stage in preparation for Boeing’s Orbital Flight Test (OFT). The uncrewed OFT mission will rendezvous and dock Boeing’s CST-100 Starliner spacecraft with the International Space Station as part of NASA’s Commercial Crew Program. Starliner will launch atop the Atlas V rocket from Space Launch Complex 41. Photo credit: NASA/Frank Michaux
The United Launch Alliance (ULA) Atlas V rocket set to launch Boeing’s CST-100 Starliner on its maiden voyage to the International Space Station for NASA’s Commercial Crew Program is ready for the mating of Starliner to the top of the launch vehicle.
The United Launch Alliance Atlas V first stage is lifted to the vertical position on Nov. 4, 2019, in the Vertical Integration Facility at Space Launch Complex 41. Photo credit: NASA/Frank Michaux
On Monday, Nov. 4, the Atlas V’s first stage was lifted to the vertical position inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, followed by the mating of two solid rocket boosters to the booster. ULA teams then attached the Centaur upper stage and launch vehicle adapter atop the Atlas V first stage.
Boeing’s uncrewed Orbital Flight Test (OFT) mission will rendezvous and dock the Starliner spacecraft with the space station. OFT will help set the stage for Boeing’s Crew Flight Test (CFT), which will carry NASA astronauts Michael Fincke and Nicole Mann, and Boeing astronaut Chris Ferguson to the space station and return them safely home.
As aerospace industry providers Boeing and SpaceX begin to make regular flights to the space station, NASA will continue to advance its mission to go beyond low-Earth orbit and establish a human presence on the Moon with the ultimate goal of sending astronauts to Mars.
NASA astronaut Doug Hurley, along with teams from NASA and SpaceX, rehearse crew extraction from SpaceX’s Crew Dragon, which will be used to carry humans to the International Space Station, on Aug. 13, 2019 at the Trident Basin in Cape Canaveral, Florida. Photo Credit: NASA/Bill Ingalls
Teams from NASA and SpaceX practiced removing astronauts from a Crew Dragon spacecraft on Tuesday, Aug. 13, at Port Canaveral in Florida, preparing for when humans return to Earth from a mission to the International Space Station as part of NASA’s Commercial Crew Program.
The joint simulation involved a mock-up of the spacecraft and Go Searcher, one of the SpaceX ships that will recover the spacecraft and astronauts after splashing down in the Atlantic Ocean. NASA astronauts Doug Hurley and Bob Behnken, who will fly to and from the space station aboard Crew Dragon for the SpaceX Demo-2 mission, participated in the exercise.
Using SpaceX’s Go Searcher ship and a mock-up of the Crew Dragon, NASA and SpaceX teams worked through the steps necessary to get NASA astronauts Doug Hurley, left, and Bob Behnken out of the Dragon and back to dry land. Photo credit: NASA/Bill Ingalls
“Integrated tests like today’s are a crucial element in preparing for human spaceflight missions,” Hurley said. “This opportunity allowed us to work with the recovery team and ensure the plans are solid for the Demo-2 mission.”
The event marked the first time a fully integrated NASA and SpaceX team worked together on the ship to go through an end-to-end practice run of how the teams will recover and extract the astronauts when they return from the space station in Crew Dragon. Hurley and Behnken were taken out of the spacecraft, given a mock medical evaluation and then transported to the Cape Canaveral Air Force Station Skid Strip, or airport.
“We’re making sure that the team integrates together — that’s a key to any successful mission,” said Ted Mosteller, the NASA recovery director in charge of the agency’s team for the Commercial Crew Program. “We worked on successfully doing what we need to do to take care of the crew once they return to Earth.”
NASA astronauts Doug Hurley, left, and Bob Behnken work with NASA and SpaceX teams during an astronaut recovery exercise in Port Canaveral, Florida. Photo Credit: NASA/Bill Ingalls
The purpose of the exercise, Mosteller pointed out, was to ensure participants knew their roles and responsibilities — and where they were supposed to be staged on the 150-foot vessel. He was extremely pleased with the results.
“It feels really good; it has been a lot of hard work to get us to this point,” Mosteller said. “There was a lot of collaboration, and it was a very positive experience for the integrated team.”
For Hurley and Behnken, it’s another milestone on the path to their historic flight.
“We are both looking forward to the Demo-2 flight and having the opportunity to return to the International Space Station,” Behnken said. “Each of these exercises puts us one step closer to fulfilling NASA’s mission of returning astronauts to the International Space Station from U.S. soil.”
As commercial crew providers Boeing and SpaceX begin to make regular flights to the space station, NASA will continue to advance its mission to go beyond low-Earth orbit and establish a human presence on the Moon with the ultimate goal of sending astronauts to Mars.
The uncrewed SpaceX Crew Dragon spacecraft is the first Commercial Crew vehicle to visit the International Space Station. Here it is pictured with its nose cone open revealing its docking mechanism while approaching the station’s Harmony module. Photo credit: NASA
NASA and SpaceX practiced Crew Dragon rendezvous and docking to the International Space Station during a virtual dress rehearsal on June 26 for the company’s first crew flight test, known as Demo-2, to the microgravity laboratory.
The Demo-2 flight test will be the Crew Dragon’s chance to demonstrate a complete mission with astronauts, from launch to landing, and will put SpaceX on its way to earning certification from NASA’s Commercial Crew Program. Photo credit: NASA
The activity is part of a series of integrated simulations bringing together NASA and SpaceX flight control teams to complete multiple practice runs for each dynamic phase of a mission from launch to splashdown. These simulations provide the teams plenty of practice to ensure they safely and successfully perform the planned operations of the actual spaceflight, with opportunities to fine-tune their procedures and gain experience on how to solve problems should they arise.
Astronauts Bob Behnken and Doug Hurley are assigned to take the first flight on SpaceX’s Demo-2 mission, and the two have been working closely with SpaceX throughout the design and construction of the spacecraft, offering up the experience they gained on previous spaceflights. Joint simulations bring them together with the teams that will support them from the ground to practice for the mission — including handling any challenges that might arise during flight.
In March, SpaceX’s Demo-1 mission proved the Crew Dragon and its Falcon 9 rocket worked as designed. Photo credit: NASA
The Demo-2 flight test will be the Crew Dragon’s chance to demonstrate a complete mission with astronauts, from launch to landing, and will put SpaceX on its way to earning certification from NASA’s Commercial Crew Program. Once the spacecraft is certified, SpaceX can begin regular flights to the space station with long-duration crews aboard.
In March, SpaceX’s Demo-1 mission proved the Crew Dragon and its Falcon 9 rocket worked as designed. The mission tested a new launch configuration, checked maneuverability demonstrations in free flight and ensured the crew’s ability to transfer power and data between the spacecraft and the space station. With those boxes all successfully checked, the Crew Dragon became the first commercial spacecraft built to carry humans to dock with the space station. Its subsequent safe reentry and splashdown in the Atlantic Ocean was an important step toward proving the spacecraft is ready to carry humans onboard.
Boeing teams ran multiple tests on Starliner’s in-space maneuvering system and the spacecraft’s launch abort system on Thursday at NASA’s White Sands Test Facility in New Mexico. Photo credit: Boeing
Boeing’s CST-100 Starliner propulsion system was put to the test on Thursday at NASA’s White Sands Test Facility in New Mexico in support of NASA’s Commercial Crew Program. Teams ran multiple tests on Starliner’s in-space maneuvering system and the spacecraft’s launch abort system, which are key elements on the path to restore America’s capability to fly astronauts to the International Space Station on American rockets and spacecraft from U.S. soil.
The test used a flight-like Starliner service module with a full propulsion system comprising of fuel and helium tanks, reaction control system and orbital maneuvering and attitude control thrusters, launch abort engines and all necessary fuel lines and avionics.
During the test:
19 thrusters fired to simulate in-space maneuvers.
12 thrusters fired to simulate a high-altitude abort.
22 propulsion elements, including the launch abort engines, fired to simulate a low-altitude abort.
Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. The company will complete a Starliner pad abort test and uncrewed flight test, called Orbital Flight Test, to the station ahead of the first flight test with a crew onboard. As commercial crew providers, Boeing and SpaceX, begin to make regular flights to the space station, NASA will continue to advance its mission to go beyond low-Earth orbit and establish a human presence on the Moon with the ultimate goal of sending astronauts to Mars.
From the manufacturing facility in Decatur, Alabama, the Atlas V booster stage and Dual Engine Centaur upper stage were rolled into a giant cargo ship for transport to Cape Canaveral, Florida. Photo credit: NASA/Emmett Given
The United Launch Alliance Atlas V rocket that will launch Boeing’s CST-100 Starliner on the Crew Flight Test (CFT) mission to the International Space Station for NASA’s Commercial Crew Program emerged on Thursday from the production factory in Decatur, Alabama for transport in a giant cargo ship to Cape Canaveral Air Force Station in Florida.
Once at Cape Canaveral Air Force Station in Florida, the United Launch Alliance Atlas V rocket will begin integrated operations and processing for the Crew Flight Test mission. Photo credit: NASA/Emmett Given
The rocket, known as AV-082, will launch Starliner and its crew of NASA astronauts Mike Fincke and Nicole Mann, and Boeing astronaut Chris Ferguson to the station following the spacecraft’s maiden voyage, the uncrewed Orbital Flight Test targeted for August.
From the manufacturing facility in Decatur, Alabama, the Atlas V booster stage and Dual Engine Centaur upper stage were moved down the road for loading into the Mariner vessel docked nearby. The 312-foot-long ship is purpose-built to navigate both shallow waters of rivers and ocean travel to reach ULA’s launch sites. It has been making the trek from Decatur to Cape Canaveral since 2001.
Once at Cape Canaveral, the Atlas V will begin integrated operations and processing for the CFT launch.
NASA selected Boeing and SpaceX to transport crew to the space station from the United States, returning the nation’s human spaceflight launch capability. These integrated spacecraft, rockets and associated systems will carry up to four astronauts on NASA missions.
Regular commercial transportation using Boeing’s Starliner and SpaceX’s Crew Dragon spacecraft to and from the station will enable expanded station use and additional research time aboard the orbiting laboratory. Research on the space station helps address the challenges of moving humanity forward to the Moon and Mars as we learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for human and robotic exploration beyond low-Earth orbit.
Manager of the Commercial Crew Program, Kathy Lueders, is featured on Episode 49 of “Houston We Have a Podcast.” The episode discusses a brief history of the space program, how it started, and where it is now. Lueders talks about two commercial partners, Boeing and SpaceX, and the work they are doing to design, build and launch new spacecraft that will carry our astronauts to and from the International Space Station. You can listen here: https://go.nasa.gov/2JOqEHU